Found problems: 15925
2013 India IMO Training Camp, 2
Let $n \ge 2$ be an integer and $f_1(x), f_2(x), \ldots, f_{n}(x)$ a sequence of polynomials with integer coefficients. One is allowed to make moves $M_1, M_2, \ldots $ as follows: in the $k$-th move $M_k$ one chooses an element $f(x)$ of the sequence with degree of $f$ at least $2$ and replaces it with $(f(x) - f(k))/(x-k)$. The process stops when all the elements of the sequence are of degree $1$. If $f_1(x) = f_2(x) = \cdots = f_n(x) = x^n + 1$, determine whether or not it is possible to make appropriate moves such that the process stops with a sequence of $n$ identical polynomials of degree 1.
2008 Mathcenter Contest, 5
There are $6$ irrational numbers. Prove that there are always three of them, suppose $a,b,c$ such that $a+b$,$b+c$,$c+a$ are irrational numbers.
[i](Erken)[/i]
2019 Saudi Arabia IMO TST, 2
Let non-constant polynomial $f(x)$ with real coefficients is given with the following property:
for any positive integer $n$ and $k$, the value of expression $$\frac{f(n + 1)f(n + 2)... f(n + k)}{ f(1)f(2) ... f(k)} \in Z$$ Prove that $f(x)$ is divisible by $x$
1991 Hungary-Israel Binational, 3
Let $ \mathcal{H}_n$ be the set of all numbers of the form $ 2 \pm\sqrt{2 \pm\sqrt{2 \pm\ldots\pm\sqrt 2}}$ where "root signs" appear $ n$ times.
(a) Prove that all the elements of $ \mathcal{H}_n$ are real.
(b) Computer the product of the elements of $ \mathcal{H}_n$.
(c) The elements of $ \mathcal{H}_{11}$ are arranged in a row, and are sorted by size in an ascending order. Find the position in that row, of the elements of $ \mathcal{H}_{11}$ that corresponds to the following combination of $ \pm$ signs: \[ \plus{}\plus{}\plus{}\plus{}\plus{}\minus{}\plus{}\plus{}\minus{}\plus{}\minus{}\]
1957 Moscow Mathematical Olympiad, 353
Solve the equation $x^3 - [x] = 3$.
1998 Romania Team Selection Test, 3
The lateral surface of a cylinder of revolution is divided by $n-1$ planes parallel to the base and $m$ parallel generators into $mn$ cases $( n\ge 1,m\ge 3)$. Two cases will be called neighbouring cases if they have a common side. Prove that it is possible to write a real number in each case such that each number is equal to the sum of the numbers of the neighbouring cases and not all the numbers are zero if and only if there exist integers $k,l$ such that $n+1$ does not divide $k$ and
\[ \cos \frac{2l\pi}{m}+\cos\frac{k\pi}{n+1}=\frac{1}{2}\]
[i]Ciprian Manolescu[/i]
2006 Purple Comet Problems, 11
Consider the polynomials \begin{align*}P(x) &= (x + \sqrt{2})(x^2 - 2x + 2)\\Q(x) &= (x - \sqrt{2})(x^2 + 2x + 2)\\R(x) &= (x^2 + 2)(x^8 + 16).\end{align*} Find the coefficient of $x^4$ in $P(x)\cdot Q(x)\cdot R(x)$.
2020 CHMMC Winter (2020-21), 5
[i](8 pts)[/i] Let $n$ be a positive integer, and let $a, b, c$ be real numbers.
(a) [i](2 pts)[/i] Given that $a\cos x+b\cos 2x +c\cos 3x \geq -1$ for all reals $x$, find, with proof, the maximum possible value of $a+b+c$.
(b) [i](6 pts)[/i] Let $f$ be a degree $n$ polynomial with real coefficients. Suppose that $|f(z)| \leq \left|f(z)+\frac{2}{z}\right|$ for all complex $z$ lying on the unit circle. Find, with proof, the maximum possible value of $f(1)$.
EMCC Team Rounds, 2011
[b]p1.[/b] Velociraptor $A$ is located at $x = 10$ on the number line and runs at $4$ units per second. Velociraptor $B$ is located at $x = -10$ on the number line and runs at $3$ units per second. If the velociraptors run towards each other, at what point do they meet?
[b]p2.[/b] Let $n$ be a positive integer. There are $n$ non-overlapping circles in a plane with radii $1, 2, ... , n$. The total area that they enclose is at least $100$. Find the minimum possible value of $n$.
[b]p3.[/b] How many integers between $1$ and $50$, inclusive, are divisible by $4$ but not $6$?
[b]p4.[/b] Let $a \star b = 1 + \frac{b}{a}$. Evaluate $((((((1 \star 1) \star 1) \star 1) \star 1) \star 1) \star 1) \star 1$.
[b]p5.[/b] In acute triangle $ABC$, $D$ and $E$ are points inside triangle $ABC$ such that $DE \parallel BC$, $B$ is closer to $D$ than it is to $E$, $\angle AED = 80^o$ , $\angle ABD = 10^o$ , and $\angle CBD = 40^o$. Find the measure of $\angle BAE$, in degrees.
[b]p6. [/b]Al is at $(0, 0)$. He wants to get to $(4, 4)$, but there is a building in the shape of a square with vertices at $(1, 1)$, $(1, 2)$, $(2, 2)$, and $(2, 1)$. Al cannot walk inside the building. If Al is not restricted to staying on grid lines, what is the shortest distance he can walk to get to his destination?
[b]p7. [/b]Point $A = (1, 211)$ and point $B = (b, 2011)$ for some integer $b$. For how many values of $b$ is the slope of $AB$ an integer?
[b]p8.[/b] A palindrome is a number that reads the same forwards and backwards. For example, $1$, $11$ and $141$ are all palindromes. How many palindromes between $1$ and 1000 are divisible by $11$?
[b]p9.[/b] Suppose $x, y, z$ are real numbers that satisfy: $$x + y - z = 5$$
$$y + z - x = 7$$
$$z + x - y = 9$$ Find $x^2 + y^2 + z^2$.
[b]p10.[/b] In triangle $ABC$, $AB = 3$ and $AC = 4$. The bisector of angle $A$ meets $BC$ at $D$. The line through $D$ perpendicular to $AD$ intersects lines $AB$ and $AC$ at $F$ and $E$, respectively. Compute $EC - FB$. (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/2/7/e26fbaeb7d1f39cb8d5611c6a466add881ba0d.png[/img]
[b]p11.[/b] Bob has a six-sided die with a number written on each face such that the sums of the numbers written on each pair of opposite faces are equal to each other. Suppose that the numbers $109$, $131$, and $135$ are written on three faces which share a corner. Determine the maximum possible sum of the numbers on the three remaining faces, given that all three are positive primes less than $200$.
[b]p12.[/b] Let $d$ be a number chosen at random from the set $\{142, 143, ..., 198\}$. What is the probability that the area of a rectangle with perimeter $400$ and diagonal length $d$ is an integer?
[b]p13.[/b] There are $3$ congruent circles such that each circle passes through the centers of the other two. Suppose that $A, B$, and $C$ are points on the circles such that each circle has exactly one of $A, B$, or $C$ on it and triangle $ABC$ is equilateral. Find the ratio of the maximum possible area of $ABC$ to the minimum possible area of $ABC$. (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/4/c/162554fcc6aa21ce3df3ce6a446357f0516f5d.png[/img]
[b]p14.[/b] Let $k$ and $m$ be constants such that for all triples $(a, b, c)$ of positive real numbers,
$$\sqrt{ \frac{4}{a^2}+\frac{36}{b^2}+\frac{9}{c^2}+\frac{k}{ab} }=\left| \frac{2}{a}+\frac{6}{b}+\frac{3}{c}\right|$$
if and only if $am^2 + bm + c = 0$. Find $k$.
[b]p15.[/b] A bored student named Abraham is writing $n$ numbers $a_1, a_2, ..., a_n$. The value of each number is either $1, 2$, or $3$; that is, $a_i$ is $1, 2$ or $3$ for $1 \le i \le n$. Abraham notices that the ordered triples $$(a_1, a_2, a_3), (a_2, a_3, a_4), ..., (a_{n-2}, a_{n-1}, a_n), (a_{n-1}, a_n, a_1), (a_n, a_1, a_2)$$ are distinct from each other. What is the maximum possible value of $n$? Give the answer n, along with an example of such a sequence. Write your answer as an ordered pair. (For example, if the answer were $5$, you might write $(5, 12311)$.)
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2008 National Olympiad First Round, 3
Let $P(x) = 1-x+x^2-x^3+\dots+x^{18}-x^{19}$ and $Q(x)=P(x-1)$. What is the coefficient of $x^2$ in polynomial $Q$?
$
\textbf{(A)}\ 840
\qquad\textbf{(B)}\ 816
\qquad\textbf{(C)}\ 969
\qquad\textbf{(D)}\ 1020
\qquad\textbf{(E)}\ 1140
$
2021 Indonesia MO, 5
Let $P(x) = x^2 + rx + s$ be a polynomial with real coefficients. Suppose $P(x)$ has two distinct real roots, both of which are less than $-1$ and the difference between the two is less than $2$. Prove that $P(P(x)) > 0$ for all real $x$.
2009 Germany Team Selection Test, 3
Let $ a$, $ b$, $ c$, $ d$ be positive real numbers such that $ abcd \equal{} 1$ and $ a \plus{} b \plus{} c \plus{} d > \dfrac{a}{b} \plus{} \dfrac{b}{c} \plus{} \dfrac{c}{d} \plus{} \dfrac{d}{a}$. Prove that
\[ a \plus{} b \plus{} c \plus{} d < \dfrac{b}{a} \plus{} \dfrac{c}{b} \plus{} \dfrac{d}{c} \plus{} \dfrac{a}{d}\]
[i]Proposed by Pavel Novotný, Slovakia[/i]
2021 ISI Entrance Examination, 3
Prove that every positive rational number can be expressed uniquely as a finite sum of the form $$a_1+\frac{a_2}{2!}+\frac{a_3}{3!}+\dots+\frac{a_n}{n!},$$ where $a_n$ are integers such that $0 \leq a_n \leq n-1$ for all $n > 1$.
2010 AMC 12/AHSME, 10
The first four terms of an arithmetic sequence are $ p,9,3p\minus{}q,$ and $ 3p\plus{}q$. What is the $ 2010^{\text{th}}$ term of the sequence?
$ \textbf{(A)}\ 8041\qquad \textbf{(B)}\ 8043\qquad \textbf{(C)}\ 8045\qquad \textbf{(D)}\ 8047\qquad \textbf{(E)}\ 8049$
2009 USA Team Selection Test, 3
For each positive integer $ n$, let $ c(n)$ be the largest real number such that
\[ c(n) \le \left| \frac {f(a) \minus{} f(b)}{a \minus{} b}\right|\]
for all triples $ (f, a, b)$ such that
--$ f$ is a polynomial of degree $ n$ taking integers to integers, and
--$ a, b$ are integers with $ f(a) \neq f(b)$.
Find $ c(n)$.
[i]Shaunak Kishore.[/i]
2005 Moldova National Olympiad, 11.2
Let $a$ and $b$ be two real numbers.
Find these numbers given that the graphs of $f:\mathbb{R} \to \mathbb{R} , f(x)=2x^4-a^2x^2+b-1$ and $g:\mathbb{R} \to \mathbb{R} ,g(x)=2ax^3-1$ have exactly two points of intersection.
2014-2015 SDML (High School), 12
Which of the following polynomials with integer coefficients has $\sin\left(10^{\circ}\right)$ as a root?
$\text{(A) }4x^3-4x+1\qquad\text{(B) }6x^3-8x^2+1\qquad\text{(C) }4x^3+4x-1\qquad\text{(D) }8x^3+6x-1\qquad\text{(E) }8x^3-6x+1$
2020 IMO Shortlist, A2
Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as
\begin{align*}
(x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z)
\end{align*}
with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.
2009 China Team Selection Test, 2
Find all complex polynomial $ P(x)$ such that for any three integers $ a,b,c$ satisfying $ a \plus{} b \plus{} c\not \equal{} 0, \frac{P(a) \plus{} P(b) \plus{} P(c)}{a \plus{} b \plus{} c}$ is an integer.
2007 Hanoi Open Mathematics Competitions, 14
How many ordered pairs of integers (x; y) satisfy the equation $x^2 + y^2 + xy = 4(x + y)?$.
1998 Brazil National Olympiad, 2
Find all functions $f : \mathbb N \to \mathbb N$ satisfying, for all $x \in \mathbb N$, \[ f(2f(x)) = x + 1998 . \]
2010 Saudi Arabia BMO TST, 3
Let $(a_n )_{n \ge o}$ and $(b_n )_{n \ge o}$ be sequences defined by $a_{n+2} = a_{n+1}+ a_n$ , $n = 0 , 1 , . .. $, $a_0 = 1$, $a_1 = 2$, and $b_{n+2} = b_{n+1} + b_n$ , $n = 0 , 1 , . . .$, $b_0 = 2$, $b_1 = 1$. How many integers do the sequences have in common?
2020 HK IMO Preliminary Selection Contest, 11
Let $a$, $b$, $c$ be the three roots of the equation $x^3-(k+1)x^2+kx+12=0$, where $k$ is a real number. If $(a-2)^3+(b-2)^3+(c-2)^3=-18$, find the value of $k$.
2010 IberoAmerican Olympiad For University Students, 6
Prove that, for all integer $a>1$, the prime divisors of $5a^4-5a^2+1$ have the form $20k\pm1,k\in\mathbb{Z}$.
[i]Proposed by Géza Kós.[/i]
2016 Balkan MO Shortlist, A8
Find all functions $f : Z \to Z$ for which $f(g(n)) - g(f(n))$ is independent on $n$ for any $g : Z \to Z$.