Found problems: 15925
1993 Tournament Of Towns, (362) 1
One of two wizards, named Steven, was told the sum of three positive integers and the other, named Peter, their product. “If I knew”, said Steven, “that your number is greater than mine, I could find the integers”. “But my number is less than yours,” replied Peter, “and the integers are $X$, $Y$ and $Z$”. Find these numbers.
(L Borisov)
2006 Flanders Math Olympiad, 2
Let $\triangle ABC$ be an equilateral triangle and let $P$ be a point on $\left[AB\right]$.
$Q$ is the point on $BC$ such that $PQ$ is perpendicular to $AB$. $R$ is the point on $AC$ such that $QR$ is perpendicular to $BC$. And $S$ is the point on $AB$ such that $RS$ is perpendicular to $AC$.
$Q'$ is the point on $BC$ such that $PQ'$ is perpendicular to $BC$. $R'$ is the point on $AC$ such that $Q'R'$ is perpendicular to $AC$. And $S'$ is the point on $AB$ such that $R'S'$ is perpendicular to $AB$.
Determine $\frac{|PB|}{|AB|}$ if $S=S'$.
1966 IMO Shortlist, 48
For which real numbers $p$ does the equation $x^{2}+px+3p=0$ have integer solutions ?
2019 Taiwan APMO Preliminary Test, P6
Let $\mathbb{N}$ denote the set of all positive integers.Function $f:\mathbb{N}\cup{0}\rightarrow\mathbb{N}\cup{0}$ satisfies :for any two distinct positive integer $a,b$, we have $$f(a)+f(b)-f(a+b)=2019$$
(1)Find $f(0)$
(2)Let $a_1,a_2,...,a_{100}$ be 100 positive integers (they are pairwise distinct), find $f(a_1)+f(a_2)+...+f(a_{100})-f(a_1+a_2+...+a_{100})$
2003 Estonia Team Selection Test, 3
Let $N$ be the set of all non-negative integers and for each $n \in N$ denote $n'= n +1$. The function $A : N^3 \to N$ is defined as follows:
(i) $A(0, m, n) = m'$ for all $m, n \in N$
(ii) $A(k', 0, n) =\left\{ \begin{array}{ll}
n & if \, \, k = 0 \\
0 & if \, \,k = 1, \\
1 & if \, \, k > 1 \end{array} \right.$ for all $k, n \in N$
(iii) $A(k', m', n) = A(k, A(k',m,n), n)$ for all $k,m, n \in N$.
Compute $A(5, 3, 2)$.
(H. Nestra)
MathLinks Contest 7th, 6.2
Find all functions $ f,g: \mathbb Q \to \mathbb Q$ such that for all rational numbers $ x,y$ we have
\[ f(f(x) \plus{} g(y) ) \equal{} g(f(x)) \plus{} y .
\]
2021 JBMO TST - Turkey, 4
Let $x,y,z$ be real numbers such that $$\left|\dfrac yz-xz\right|\leq 1\text{ and }\left|yz+\dfrac xz\right|\leq 1$$ Find the maximum value of the expression $$x^3+2y$$
2017 India IMO Training Camp, 1
Let $P_c(x)=x^4+ax^3+bx^2+cx+1$ and $Q_c(x)=x^4+cx^3+bx^2+ax+1$ with $a,b$ real numbers, $c \in \{1,2, \dots, 2017\}$ an integer and $a \ne c$. Define $A_c=\{\alpha | P_c(\alpha)=0\}$ and $B_c=\{\beta | P(\beta)=0\}$.
(a) Find the number of unordered pairs of polynomials $P_c(x), Q_c(x)$ with exactly two common roots.
(b) For any $1 \le c \le 2017$, find the sum of the elements of $A_c \Delta B_c$.
1996 Romania Team Selection Test, 12
Let $ n\geq 3 $ be an integer and let $ p\geq 2n-3 $ be a prime number. For a set $ M $ of $ n $ points in the plane, no 3 collinear, let $ f: M\to \{0,1,\ldots, p-1\} $ be a function such that
(i) exactly one point of $ M $ maps to 0,
(ii) if a circle $ \mathcal{C} $ passes through 3 distinct points of $ A,B,C\in M $ then $ \sum_{P\in M\cap \mathcal{C}} f(P) \equiv 0 \pmod p $.
Prove that all the points in $ M $ lie on a circle.
LMT Guts Rounds, 2014
[u]Round 6[/u]
16. If you roll four fair $6$-sided dice, what is the probability that at least three of them will show the same value.
17. In a tetrahedron with volume $1$, four congruent speres are placed each tangent to three walls and three other spheres. What is the radii of each of the spheres.
18. let $f(x)$ be twice the number of letters in $x$. What is the sum of the unique $x,y$ such that $x \ne y$ and $f(x)=y$ and $f(y)=x$.
[u]Round 7[/u]
[b]p19.[/b] How many $4$ digit numbers with distinct digits $ABCD$ with $A$ not equal to $0$ are divisible by $11$?
[b]p20.[/b] How many ($2$-dimensional) faces does a $2014$-dimensional hypercube have?
[b]p21.[/b] How many subsets of the numbers $1,2,3,4...2^{2014}$ have a sum of $2014$ mod $2^{2014}$?
[u]Round 8[/u]
[b]p22.[/b] Two diagonals of a dodecagon measure $1$ unit and $2$ units. What is the area of this dodecagon?
[b]p23.[/b] Square $ABCD$ has point $X$ on AB and $Y$ on $BC$ such that angle $ADX = 15$ degrees and angle $CDY = 30$ degrees. what is the degree measure of angle $DXY$?
[b]p24.[/b] A $4\times 4$ grid has the numbers $1$ through $16$ placed in it, $1$ per cell, such that no adjacent boxes have cells adding to a number divisible by $3$. In how many ways is this possible?
[u]Round 9[/u]
[b]p25.[/b] Let $B$ and $C$ be the answers to $26$ and $27$ respectively.If $S(x)$ is the sum of the digits in $x$, what is the unique integer $A$ such that $S(A), S(B), S(C) \subset A,B,C$.
[b]p26.[/b] Let $A$ and $C$ be the answers to $25$ and $27$ respectively. What is the third angle of a triangle with two of its angles equal to $A$ and $C$ degrees.
[b]p27.[/b] Let $A$ and $B$ be the answers to $25$ and $26$ respectively. How many ways are there to put $A$ people in a line, with exactly $B$ places where a girl and a boy are next to each other.
[u]Round 10[/u]
[b]p28.[/b] What is the sum of all the squares of the digits to answers to problems on the individual, team, and theme rounds of this years LMT? If the correct answer is $N$ and you submit $M$, you will recieve $\lfloor 15 - 10 \times \log (M - N) \rfloor $.
[b]p29.[/b] How many primes have all distinct digits, like $2$ or $109$ for example, but not $101$. If the correct answer is $N$ and you submit $M$, you will recieve $\left\lfloor 15 \min \left( \frac{M}{N} , \frac{N}{M} \right)\right\rfloor $.
[b]p30.[/b] For this problem, you can use any $10$ mathematical symbols that you want, to try to achieve the highest possible finite number. (So "Twenty-one", " $\frac{12}{100} +843$" and "$\sum^{10}_{i=0} i^2 +1$" are all valid submissions.) If your team has the $N$th highest number, you will recieve $\max (16 - N, 0)$.
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3156859p28695035]here[/url].. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Switzerland - Final Round, 5
Let $D$ be the set of real numbers excluding $-1$. Find all functions $f: D \to D$ such that for all $x,y \in D$ satisfying $x \neq 0$ and $y \neq -x$, the equality $$(f(f(x))+y)f \left(\frac{y}{x} \right)+f(f(y))=x$$ holds.
2012 IMC, 1
Consider a polynomial
\[f(x)=x^{2012}+a_{2011}x^{2011}+\dots+a_1x+a_0.\]
Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the coefficients $a_0,a_1,\dots,a_{2011}$ and assign a real value to it. Albert has the first move. Once a value is assigned to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been assigned values.
Homer's goal is to make $f(x)$ divisible by a fixed polynomial $m(x)$ and Albert's goal is to prevent this.
(a) Which of the players has a winning strategy if $m(x)=x-2012$?
(b) Which of the players has a winning strategy if $m(x)=x^2+1$?
[i]Proposed by Fedor Duzhin, Nanyang Technological University.[/i]
2020 Bulgaria Team Selection Test, 5
Given is a function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $|f(x+y)-f(x)-f(y)|\leq 1$.
Prove the existence of an additive function $g:\mathbb{R}\rightarrow \mathbb{R}$ (that is $g(x+y)=g(x)+g(y)$) such that $|f(x)-g(x)|\leq 1$ for any $x \in \mathbb{R}$
2002 IMC, 3
Let $n$ be a positive integer and let $a_k = \dfrac{1}{\binom{n}{k}}, b_k = 2^{k-n},\ (k=1..n)$.
Show that $\sum_{k=1}^n \dfrac{a_k-b_k}{k} = 0$.
1978 IMO Longlists, 34
A function $f : I \to \mathbb R$, defined on an interval $I$, is called concave if $f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in I$ and $0 \leq \theta \leq 1$. Assume that the functions $f_1, \ldots , f_n$, having all nonnegative values, are concave. Prove that the function $(f_1f_2 \cdots f_n)^{1/n}$ is concave.
2020 Malaysia IMONST 2, 5
Let $p$ and $q$ be real numbers such that the quadratic equation $x^2 + px + q = 0$ has two distinct real solutions $x_1$ and $x_2$. Suppose $|x_1-x_2|=1$, $|p-q|=1$. Prove that $p, q, x_1, x_2$ are all integers.
Gheorghe Țițeica 2025, P1
Find all real numbers $x$ which satisfy $\frac{n}{3n+1}\leq x\leq \frac{4n+1}{2n-1}$, for all $n\in\mathbb{N}^*$.
[i]Gheorghe Boroica[/i]
2025 All-Russian Olympiad Regional Round, 10.10
On the graphic of the function $y=x^2$ were selected $1000$ pairwise distinct points, abscissas of which are integer numbers from the segment $[0; 100000]$. Prove that it is possible to choose six different selected points $A$, $B$, $C$, $A'$, $B'$, $C'$ such that areas of triangles $ABC$ and $A'B'C'$ are equals.
[i]A. Tereshin[/i]
2005 Bulgaria Team Selection Test, 3
Let $\mathbb{R}^{*}$ be the set of non-zero real numbers. Find all functions $f : \mathbb{R}^{*} \to \mathbb{R}^{*}$ such that $f(x^{2}+y) = (f(x))^{2} + \frac{f(xy)}{f(x)}$, for all $x,y \in \mathbb{R}^{*}$ and $-x^{2} \not= y$.
2015 Turkmenistan National Math Olympiad, 3
Find the sum : $C^{n}_{1}$ - $\frac{1}{3} \cdot C^{n}_{3}$ + $\frac{1}{9} \cdot C^{n}_{5}$ - $\frac{1}{27} \cdot C^{n}_{9}$ + ...
1999 IMO Shortlist, 6
For $n \geq 3$ and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ given real numbers we have the following instructions:
- place out the numbers in some order in a ring;
- delete one of the numbers from the ring;
- if just two numbers are remaining in the ring: let $S$ be the sum of these two numbers. Otherwise, if there are more the two numbers in the ring, replace
Afterwards start again with the step (2). Show that the largest sum $S$ which can result in this way is given by the formula
\[S_{max}= \sum^n_{k=2} \begin{pmatrix} n -2 \\
[\frac{k}{2}] - 1\end{pmatrix}a_{k}.\]
1996 Nordic, 2
Determine all real numbers $x$, such that $x^n+x^{-n}$ is an integer for all integers $n$.
2009 IMO Shortlist, 3
Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$.
[i]Proposed by Juhan Aru, Estonia[/i]
2021 Korea Winter Program Practice Test, 6
Is there exist a sequence $a_0,a_1,a_2,\cdots $ consisting of non-zero integers that satisfies the following condition?
[b]Condition[/b]: For all integers $n$ ($\ge 2020$), equation
$$a_n x^n+a_{n-1}x^{n-1}+\cdots +a_0=0$$
has a real root with its absolute value larger than $2.001$.
2021 Science ON grade X, 4
Find all functions $f:\mathbb{Z}_{\ge 1}\to \mathbb{R}_{>0}$ such that for all positive integers $n$ the following relation holds: $$\sum_{d|n} f(d)^3=\left (\sum_{d|n} f(d) \right )^2,$$
where both sums are taken over the positive divisors of $n$.
[i] (Vlad Robu) [/i]