This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Regional Olympiad of Mexico Northeast, 2

Of all the fractions $\frac{x}{y}$ that satisfy $$\frac{41}{2010}<\frac{x}{y}<\frac{1}{49}$$ find the one with the smallest denominator.

2017 Kosovo National Mathematical Olympiad, 4

Prove that : $\cos36-\sin18=\frac{1}{2}$

2023 BMT, 13

Tags: algebra , geometry
Consider the set of triangles with side lengths $1 \le x \le y \le z$ such that $x$, $y$, and $z$ are the solutions to the equation $t^3-at^2+bt = 12$ for some real numbers $a$ and $b$. Compute the smallest real number $N$ such that $N > ab$ for any choice of $x$, $y$, and $z$.

1999 Swedish Mathematical Competition, 5

$x_i$ are non-negative reals. $x_1 + x_2 + ...+ x_n = s$. Show that $x_1x_2 + x_2x_3 + ... + x_{n-1}x_n \le \frac{s^2}{4}$.

2022 Girls in Math at Yale, R4

[b]p10 [/b]Kathy has two positive real numbers, $a$ and $b$. She mistakenly writes $$\log (a + b) = \log (a) + \log( b),$$ but miraculously, she finds that for her combination of $a$ and $b$, the equality holds. If $a = 2022b$, then $b = \frac{p}{q}$ , for positive integers $p, q$ where $gcd(p, q) = 1$. Find $p + q$. [b]p11[/b] Points $X$ and $Y$ lie on sides $AB$ and $BC$ of triangle $ABC$, respectively. Ray $\overrightarrow{XY}$ is extended to point $Z$ such that $A, C$, and $Z$ are collinear, in that order. If triangle$ ABZ$ is isosceles and triangle $CYZ$ is equilateral, then the possible values of $\angle ZXB$ lie in the interval $I = (a^o, b^o)$, such that $0 \le a, b \le 360$ and such that $a$ is as large as possible and $b$ is as small as possible. Find $a + b$. [b]p12[/b] Let $S = \{(a, b) | 0 \le a, b \le 3, a$ and $b$ are integers $\}$. In other words, $S$ is the set of points in the coordinate plane with integer coordinates between $0$ and $3$, inclusive. Prair selects four distinct points in $S$, for each selected point, she draws lines with slope $1$ and slope $-1$ passing through that point. Given that each point in $S$ lies on at least one line Prair drew, how many ways could she have selected those four points?

II Soros Olympiad 1995 - 96 (Russia), 11.9

Tags: algebra
Solve the equation $$x(2^{1-2x}-1)=2^{x-2x^2}-1$$

2019 Iran Team Selection Test, 4

Let $1<t<2$ be a real number. Prove that for all sufficiently large positive integers like $d$, there is a monic polynomial $P(x)$ of degree $d$, such that all of its coefficients are either $+1$ or $-1$ and $$\left|P(t)-2019\right| <1.$$ [i]Proposed by Navid Safaei[/i]

2023 Abelkonkurransen Finale, 4b

Find all functions $f: \mathbb R^{+} \to \mathbb R^{+}$ satisfying \begin{align*} f(f(x)+y) = f(y) + x, \qquad \text{for all } x,y \in \mathbb R^{+}. \end{align*} Note that $\mathbb R^{+}$ is the set of all positive real numbers.

2018 Pan-African Shortlist, C2

Adamu and Afaafa choose, each in his turn, positive integers as coefficients of a polynomial of degree $n$. Adamu wins if the polynomial obtained has an integer root; otherwise, Afaafa wins. Afaafa plays first if $n$ is odd; otherwise Adamu plays first. Prove that: [list] [*] Adamu has a winning strategy if $n$ is odd. [*] Afaafa has a winning strategy if $n$ is even. [/list]

2025 Harvard-MIT Mathematics Tournament, 1

Compute the sum of the positive divisors (including $1$) of $9!$ that have units digit $1.$

2018 Iran Team Selection Test, 2

Find the maximum possible value of $k$ for which there exist distinct reals $x_1,x_2,\ldots ,x_k $ greater than $1$ such that for all $1 \leq i, j \leq k$, $$x_i^{\lfloor x_j \rfloor }= x_j^{\lfloor x_i\rfloor}.$$ [i]Proposed by Morteza Saghafian[/i]

2010 Contests, 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

1972 Putnam, B6

Let $ n_1<n_2<n_3<\cdots <n_k$ be a set of positive integers. Prove that the polynomial $ 1\plus{}z^{n_1}\plus{}z^{n_2}\plus{}\cdots \plus{}z^{n_k}$ has no roots inside the circle $ |z|<\frac{\sqrt{5}\minus{}1}{2}$.

2023 ELMO Shortlist, A5

Tags: algebra
Find the least positive integer \(M\) for which there exist a positive integer \(n\) and polynomials \(P_1(x)\), \(P_2(x)\), \(\ldots\), \(P_n(x)\) with integer coefficients satisfying \[Mx=P_1(x)^3+P_2(x)^3+\cdots+P_n(x)^3.\] [i]Proposed by Karthik Vedula[/i]

2021 Iran Team Selection Test, 4

Assume $\Omega(n),\omega(n)$ be the biggest and smallest prime factors of $n$ respectively . Alireza and Amin decided to play a game. First Alireza chooses $1400$ polynomials with integer coefficients. Now Amin chooses $700$ of them, the set of polynomials of Alireza and Amin are $B,A$ respectively . Amin wins if for all $n$ we have : $$\max_{P \in A}(\Omega(P(n))) \ge \min_{P \in B}(\omega(P(n)))$$ Who has the winning strategy. Proposed by [i]Alireza Haghi[/i]

1951 Polish MO Finals, 4

Determine the coefficients of the equation $$ x^3 - ax^2 + bx - c = 0$$ in such a way that the roots of this equation are the numbers $ a $, $ b $, $ c $.

2019 District Olympiad, 4

Find the smallest positive real number $\lambda$ such that for every numbers $a_1,a_2,a_3 \in \left[0, \frac{1}{2} \right]$ and $b_1,b_2,b_3 \in (0, \infty)$ with $\sum\limits_{i=1}^3a_i=\sum\limits_{i=1}^3b_i=1,$ we have $$b_1b_2b_3 \le \lambda (a_1b_1+a_2b_2+a_3b_3).$$

2017 Costa Rica - Final Round, 6

Let $f:] 0. \infty [ \to R$ be a strictly increasing function, such that $$f (x) f\left(f (x) +\frac{1}{x} \right)= 1.$$ Find $f (1)$.

2006 Switzerland Team Selection Test, 2

Tags: geometry , algebra
Let $n\ge5$ be an integer. Find the biggest integer $k$ such that there always exists a $n$-gon with exactly $k$ interior right angles. (Find $k$ in terms of $n$).

Revenge EL(S)MO 2024, 3

Find all solutions to \[ (abcde)^2 = a^2+b^2+c^2+d^2+e^2+f^2. \] in integers. Proposed by [i]Seongjin Shim[/i]

2010 District Olympiad, 3

For any real number $ x$ prove that: \[ x\in \mathbb{Z}\Leftrightarrow \lfloor x\rfloor \plus{}\lfloor 2x\rfloor\plus{}\lfloor 3x\rfloor\plus{}...\plus{}\lfloor nx\rfloor\equal{}\frac{n(\lfloor x\rfloor\plus{}\lfloor nx\rfloor)}{2}\ ,\ (\forall)n\in \mathbb{N}^*\]

2017 Saudi Arabia IMO TST, 1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \ge 2017$, the integer $P(n)$ is positive and $S(P(n)) = P(S(n))$.

2022 Auckland Mathematical Olympiad, 2

The number $12$ is written on the whiteboard. Each minute, the number on the board is either multiplied or divided by one of the numbers $2$ or $3$ (a division is possible only if the result is an integer) . Prove that the number that will be written on the board in exactly one hour will not be equal to $54$.

2021 Czech-Polish-Slovak Junior Match, 4

Find the smallest value that the expression takes $x^4 + y^4 - x^2y - xy^2$, for positive numbers $x$ and $y$ satisfying $x + y \le 1$.

1982 IMO Shortlist, 1

The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.