This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

2019 Puerto Rico Team Selection Test, 1

A square is divided into $25$ unit squares by drawing lines parallel to the sides of the square. Some diagonals of unit squares are drawn from such that two diagonals do not share points. What is the maximum number diagonals that can be drawn with this property?

2016 Auckland Mathematical Olympiad, 3

Tags: square , geometry , area
Triangle $XYZ$ is inside square $KLMN$ shown below so that its vertices each lie on three different sides of the square. It is known that: $\bullet$ The area of square $KLMN$ is $1$. $\bullet$ The vertices of the triangle divide three sides of the square up into these ratios: $KX : XL = 3 : 2$ $KY : YN = 4 : 1$ $NZ : ZM = 2 : 3$ What is the area of the triangle $XYZ$? (Note that the sketch is not drawn to scale). [img]https://cdn.artofproblemsolving.com/attachments/8/0/38e76709373ba02346515f9949ce4507ed4f8f.png[/img]

2021 Brazil National Olympiad, 4

A set \(A\) of real numbers is framed when it is bounded and, for all \(a, b \in A\), not necessarily distinct, \((a-b)^{2} \in A\). What is the smallest real number that belongs to some framed set?

2007 Postal Coaching, 1

Let $P$ be a point on the circumcircle of a square $ABCD$. Find all integers $n > 0$ such that the sum $$S_n(P) = |PA|^n + |PB|^n + |PC|^n + |PD|^n$$ is constant with respect to the point $P$.

1972 All Soviet Union Mathematical Olympiad, 164

Given several squares with the total area $1$. Prove that you can pose them in the square of the area $2$ without any intersections.

1996 Bundeswettbewerb Mathematik, 1

Can a square of side length $5$ be covered by three squares of side length $4$?

1987 Tournament Of Towns, (157) 1

From vertex $A$ in square $ABCD$ (of side length $1$ ) two lines are drawn , one intersecting side $BC$ and the other intersecting side $CD$. The angle between these lines is $\theta$. From vertices $B$ and $D$ we construct perpendiculars to each of these lines . Find the area of the quadrilateral whose vertices are the four feet of these perpendiculars.

1941 Moscow Mathematical Olympiad, 076

On the sides of a parallelogram, squares are constructed outwards. Prove that the centers of these squares are vertices of a square.

Kyiv City MO Juniors 2003+ geometry, 2020.7.4

Given a square $ABCD$ with side $10$. On sides BC and $AD$ of this square are selected respectively points $E$ and $F$ such that formed a rectangle $ABEF$. Rectangle $KLMN$ is located so that its the vertices $K, L, M$ and $N$ lie one on each segments $CD, DF, FE$ and $EC$, respectively. It turned out that the rectangles $ABEF$ and $KLMN$ are equal with $AB = MN$. Find the length of segment $AL$.

1950 Moscow Mathematical Olympiad, 183

A circle is inscribed in a triangle and a square is circumscribed around this circle so that no side of the square is parallel to any side of the triangle. Prove that less than half of the square’s perimeter lies outside the triangle.

1998 Tuymaada Olympiad, 7

All possible sequences of numbers $-1$ and $+1$ of length $100$ are considered. For each of them, the square of the sum of the terms is calculated. Find the arithmetic average of the resulting values.

1984 Brazil National Olympiad, 5

$ABCD$ is any convex quadrilateral. Squares center $E, F, G, H$ are constructed on the outside of the edges $AB, BC, CD$ and $DA$ respectively. Show that $EG$ and $FH$ are equal and perpendicular.

2014 Saudi Arabia GMO TST, 3

Turki has divided a square into finitely many white and green rectangles, each with sides parallel to the sides of the square. Within each white rectangle, he writes down its width divided by its height. Within each green rectangle, he writes down its height divided by its width. Finally, he calculates $S$, the sum of these numbers. If the total area of white rectangles equals the total area of green rectangles, determine the minimum possible value of $S$.

2019 Portugal MO, 1

Tags: geometry , square , area
In a square of side $10$ cm , the vertices are joined to the midpoints on the opposite sides, as shown in the figure. How much does the area of the colored region measure? [img]https://1.bp.blogspot.com/-bHrc1Nu0PQI/X4KaJysLAcI/AAAAAAAAMk0/LLGv1fotQO0Tk1AXqQymG_nNdpyWcbjyACLcBGAsYHQ/s109/2019%2BPortugal%2Bp1.png[/img]

1985 IMO Longlists, 26

Let $K$ and $K'$ be two squares in the same plane, their sides of equal length. Is it possible to decompose $K$ into a finite number of triangles $T_1, T_2, \ldots, T_p$ with mutually disjoint interiors and find translations $t_1, t_2, \ldots, t_p$ such that \[K'=\bigcup_{i=1}^{p} t_i(T_i) \ ? \]

1981 IMO Shortlist, 10

Determine the smallest natural number $n$ having the following property: For every integer $p, p \geq n$, it is possible to subdivide (partition) a given square into $p$ squares (not necessarily equal).

2013 District Olympiad, 4

Consider the square $ABCD$ and the point $E$ inside the angle $CAB$, such that $\angle BAE =15^o$, and the lines $BE$ and $BD$ are perpendicular. Prove that $AE = BD$.

2003 Bosnia and Herzegovina Team Selection Test, 2

Upon sides $AB$ and $BC$ of triangle $ABC$ are constructed squares $ABB_{1}A_{1}$ and $BCC_{1}B_{2}$. Prove that lines $AC_{1}$, $CA_{1}$ and altitude from $B$ to side $AC$ are concurrent.

2024 Mozambican National MO Selection Test, P2

On a sheet divided into squares, each square measuring $2cm$, two circles are drawn such that both circles are inscribed in a square as in the figure below. Determine the minimum distance between the two circles.

2008 Dutch Mathematical Olympiad, 1

Suppose we have a square $ABCD$ and a point $S$ in the interior of this square. Under homothety with centre $S$ and ratio of magnification $k > 1$, this square becomes another square $A'B'C'D'$. Prove that the sum of the areas of the two quadrilaterals $A'ABB'$ and $C'CDD'$ are equal to the sum of the areas of the two quadrilaterals $B'BCC'$ and $D'DAA'$. [asy] unitsize(3 cm); pair[] A, B, C, D; pair S; A[1] = (0,1); B[1] = (0,0); C[1] = (1,0); D[1] = (1,1); S = (0.3,0.6); A[0] = interp(S,A[1],2/3); B[0] = interp(S,B[1],2/3); C[0] = interp(S,C[1],2/3); D[0] = interp(S,D[1],2/3); draw(A[0]--B[0]--C[0]--D[0]--cycle); draw(A[1]--B[1]--C[1]--D[1]--cycle); draw(A[1]--S, dashed); draw(B[1]--S, dashed); draw(C[1]--S, dashed); draw(D[1]--S, dashed); dot("$A$", A[0], N); dot("$B$", B[0], SE); dot("$C$", C[0], SW); dot("$D$", D[0], SE); dot("$A'$", A[1], NW); dot("$B'$", B[1], SW); dot("$C'$", C[1], SE); dot("$D'$", D[1], NE); dot("$S$", S, dir(270)); [/asy]

1986 Tournament Of Towns, (110) 4

We are given the square $ABCD$. On sides $AB$ and $CD$ we are given points $ K$ and $L$ respectively, and on segment $KL$ we are given point $M$ . Prove that the second intersection point (i.e. the one other than $M$) of the intersection points of circles circumscribed around triangles $AKM$ and $MLC$ lies on the diagonal $AC$. (V . N . Dubrovskiy)

1967 Putnam, B4

a) A certain locker room contains $n$ lockers numbered $1,2,\ldots,n$ and all are originally locked. An attendant performs a sequence of operations $T_1, T_2 ,\ldots, T_n$, whereby with the operation $T_k$ the state of those lockers whose number is divisible by $k$ is swapped. After all $n$ operations have been performed, it is observed that all lockers whose number is a perfect square (and only those lockers) are open. Prove this. b) Investigate in a meaningful mathematical way a procedure or set of operations similar to those above which will produce the set of cubes, or the set of numbers of the form $2 m^2 $, or the set of numbers of the form $m^2 +1$, or some nontrivial similar set of your own selection.

1976 Chisinau City MO, 133

A triangle with a parallelogram inside was placed in a square. Prove that the area of a parallelogram is not more than a quarter of a square.

2015 NIMO Summer Contest, 11

Tags: prime , square
We say positive integer $n$ is $\emph{metallic}$ if there is no prime of the form $m^2-n$. What is the sum of the three smallest metallic integers? [i] Proposed by Lewis Chen [/i]

1988 All Soviet Union Mathematical Olympiad, 469

If rationals $x, y$ satisfy $x^5 + y^5 = 2 x^2 y^2$, show that $1-x y$ is the square of a rational.