This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2016 Fall CHMMC, 4

Tags: algebra
Compute $$\sum_{n=1}^{\infty} \frac{2^{n+1}}{8 \cdot 4^n - 6 \cdot 2^n +1}$$

1954 Moscow Mathematical Olympiad, 281

*. Positive numbers $x_1, x_2, ..., x_{100}$ satisfy the system $$\begin{cases} x^2_1+ x^2_2+ ... + x^2_{100} > 10 000 \\ x_1 + x_2 + ...+ x_{100} < 300 \end{cases}$$ Prove that among these numbers there are three whose sum is greater than $100$.

2013 Junior Balkan Team Selection Tests - Romania, 1

Let $a, b, c, d > 0$ satisfying $abcd = 1$. Prove that $$\frac{1}{a + b + 2}+\frac{1}{b + c + 2}+\frac{1}{c + d + 2}+\frac{1}{d + a + 2} \le 1$$

2006 Putnam, A5

Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_{k}=\tan(\theta+k\pi/n),\ k=1,2\dots,n.$ Prove that \[\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}a_{2}\cdots a_{n}}\] is an integer, and determine its value.

2005 MOP Homework, 6

Tags: algebra , induction
Let $n$ be a positive integer. Show that \begin{align*}&\quad\,\,\frac{1}{\binom{n}{1}}+\frac{1}{2\binom{n}{2}}+\frac{1}{3\binom{n}{3}}+\cdots+\frac{1}{n\binom{n}{n}}\\&=\frac{1}{2^{n-1}}+\frac{1}{2\cdot2^{n-2}}+\frac{1}{3\cdot2^{n-3}}+\cdots+\frac{1}{n\cdot2^0}.\end{align*}

2011 Ukraine Team Selection Test, 8

Is there an increasing sequence of integers $ 0 = {{a} _{0}} <{{a} _{1}} <{{a} _{2}} <\ldots $ for which the following two conditions are satisfied simultaneously: 1) any natural number can be given as $ {{a} _{i}} + {{a} _{j}} $ for some (possibly equal) $ i \ge 0 $, $ j \ge 0$ , 2) $ {{a} _ {n}}> \tfrac {{{n} ^ {2}}} {16} $ for all natural $ n $?

1971 Spain Mathematical Olympiad, 1

Tags: algebra , sum
Calculate $$\sum_{k=5}^{k=49}\frac{11_(k}{2\sqrt[3]{1331_(k}}$$ knowing that the numbers $11$ and $1331$ are written in base $k \ge 4$.

2015 Ukraine Team Selection Test, 12

For a given natural $n$, we consider the set $A\subset \{1,2, ..., n\}$, which consists of at least $\left[\frac{n+1}{2}\right]$ items. Prove that for $n \ge 2015$ the set $A$ contains a three-element arithmetic sequence.

2021 China Team Selection Test, 4

Suppose $x_1,x_2,...,x_{60}\in [-1,1]$ , find the maximum of $$ \sum_{i=1}^{60}x_i^2(x_{i+1}-x_{i-1}),$$ where $x_{i+60}=x_i$.

2018 Azerbaijan BMO TST, 2

Let $M = \{(a,b,c)\in R^3 :0 <a,b,c<\frac12$ with $a+b+c=1 \}$ and $f: M\to R$ given as $$f(a,b,c)=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{abc}$$ Find the best (real) bounds $\alpha$ and $\beta$ such that $f(M) = \{f(a,b,c): (a,b,c)\in M\}\subseteq [\alpha,\beta]$ and determine whether any of them is achievable.

2023 Taiwan TST Round 2, N

Find all polynomials $P$ with real coefficients satisfying that there exist infinitely many pairs $(m, n)$ of coprime positives integer such that $P(\frac{m}{n})=\frac{1}{n}$. [i] Proposed by usjl[/i]

1985 IMO Longlists, 63

Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that \[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]

2017 Singapore Senior Math Olympiad, 5

Given $7$ distinct positive integers, prove that there is an infinite arithmetic progression of positive integers $a, a + d, a + 2d,..$ with $a < d$, that contains exactly $3$ or $4$ of the $7$ given integers.

Gheorghe Țițeica 2024, P1

Tags: algebra
Let $n\geq 3$ and $A=\{1,2,\dots ,n\}$. For any function $f:A\rightarrow A$ we define $$A_f=\{|f(1)-f(2)|,|f(2)-f(3)|,\dots ,|f(n-1)-f(n)|,|f(n)-f(1)|\}.$$ Determine the smallest and greatest value of the cardinal of $A_f$ as $f$ goes through all bijective functions from $A$ to $A$. [i]Silviu Cristea[/i]

2004 AMC 12/AHSME, 23

The polynomial $ x^3\minus{}2004x^2\plus{}mx\plus{}n$ has integer coefficients and three distinct positive zeros. Exactly one of these is an integer, and it is the sum of the other two. How many values of $ n$ are possible? $ \textbf{(A)}\ 250,\!000 \qquad \textbf{(B)}\ 250,\!250 \qquad \textbf{(C)}\ 250,\!500 \qquad \textbf{(D)}\ 250,\!750 \qquad \textbf{(E)}\ 251,\!000$

2012 Junior Balkan Team Selection Tests - Romania, 1

Prove that if the positive real numbers $p$ and $q$ satisfy $\frac{1}{p}+\frac{1}{q}= 1$, then a) $\frac{1}{3} \le \frac{1}{p (p + 1)} +\frac{1}{q (q + 1)} <\frac{1}{2}$ b) $\frac{1}{p (p - 1)} + \frac{1}{q (q - 1)} \ge 1$

2008 JBMO Shortlist, 5

Find all triples $(x, y, z)$ of real positive numbers, which satisfy the system $\begin{cases} \frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3 \\ x + y + z \le 12 \end{cases}$

2009 Germany Team Selection Test, 3

Find all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that $ \forall x,y,z \in \mathbb{R}$ we have: If \[ x^3 \plus{} f(y) \cdot x \plus{} f(z) \equal{} 0,\] then \[ f(x)^3 \plus{} y \cdot f(x) \plus{} z \equal{} 0.\]

2013 NZMOC Camp Selection Problems, 3

Prove that for any positive integer $n > 2$ we can find $n$ distinct positive integers, the sum of whose reciprocals is equal to $1$.

2001 Saint Petersburg Mathematical Olympiad, 11.4

For any two positive integers $n>m$ prove the following inequality: $$[m,n]+[m+1,n+1]\geq \dfrac{2nm}{\sqrt{m-n}}$$ As always, $[x,y]$ means the least common multiply of $x,y$. [I]Proposed by A. Golovanov[/i]

2019 Turkey MO (2nd round), 5

Let $f:\{1,2,\dots,2019\}\to\{-1,1\}$ be a function, such that for every $k\in\{1,2,\dots,2019\}$, there exists an $\ell\in\{1,2,\dots,2019\}$ such that $$ \sum_{i\in\mathbb{Z}:(\ell-i)(i-k)\geqslant 0} f(i)\leqslant 0. $$ Determine the maximum possible value of $$ \sum_{i\in\mathbb{Z}:1\leqslant i\leqslant 2019} f(i). $$

1991 Polish MO Finals, 3

If $x, y, z$ are real numbers satisfying $x^2 +y^2 +z^2 = 2$, prove the inequality \[ x + y + z \leq 2 + xyz \] When does equality occur?

1996 Romania National Olympiad, 1

Let $a$ and $b$ be real numbers such that $a + b = 2$. Show that: $$\min \{|a|,|b|\} < 1 < \max \{|a|,|b|\} \Leftrightarrow a, b \in (-3,1)$$

IV Soros Olympiad 1997 - 98 (Russia), 9.4

Find the smallest value of the expression $$16 \cdot \frac{x^3}{y}+\frac{y^3}{x}-\sqrt{xy}$$

1988 Polish MO Finals, 1

The real numbers $x_1, x_2, ... , x_n$ belong to the interval $(0,1)$ and satisfy $x_1 + x_2 + ... + x_n = m + r$, where $m$ is an integer and $r \in [0,1)$. Show that $x_1 ^2 + x_2 ^2 + ... + x_n ^2 \leq m + r^2$.