Found problems: 15925
2020 Taiwan TST Round 3, 3
Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying
\[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\]
for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set
\[X_v=\{x\in\mathbb Z:f(x)=v\}\]
is finite and nonempty.
(a) Prove that there exists such a function $f$ for which there is an $f$-rare integer.
(b) Prove that no such function $f$ can have more than one $f$-rare integer.
[i]Netherlands[/i]
2013 Dutch IMO TST, 5
Let $a, b$, and $c$ be positive real numbers satisfying $abc = 1$.
Show that $a + b + c \ge \sqrt{\frac13 (a + 2)(b + 2)(c + 2)}$
2018 Purple Comet Problems, 13
Suppose $x$ and $y$ are nonzero real numbers simultaneously satisfying the equations
$x + \frac{2018}{y}= 1000$ and $ \frac{9}{x}+ y = 1$.
Find the maximum possible value of $x + 1000y$.
2022 Macedonian Team Selection Test, Problem 3
We consider all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(n)+n)=n$ and $f(a+b-1) \leq f(a)+f(b)$ for all positive integers $a, b, n$. Prove that there are at most two values for $f(2022)$.
$\textit {Proposed by Ilija Jovcheski}$
2011 Postal Coaching, 6
Prove that there exist integers $a, b, c$ all greater than $2011$ such that
\[(a+\sqrt{b})^c=\ldots 2010 \cdot 2011\ldots\]
[Decimal point separates an integer ending in $2010$ and a decimal part beginning with $2011$.]
2014 Iran MO (3rd Round), 5
We say $p(x,y)\in \mathbb{R}\left[x,y\right]$ is [i]good[/i] if for any $y \neq 0$ we have $p(x,y) = p\left(xy,\frac{1}{y}\right)$ . Prove that there are good polynomials $r(x,y) ,s(x,y)\in \mathbb{R}\left[x,y\right]$ such that for any good polynomial $p$ there is a $f(x,y)\in \mathbb{R}\left[x,y\right]$ such that \[f(r(x,y),s(x,y))= p(x,y)\]
[i]Proposed by Mohammad Ahmadi[/i]
2010 Mathcenter Contest, 1
Let $a,b,c\in\mathbb{N}$ prove that if there is a polynomial $P,Q,R\in\mathbb{C}[x]$, which have no common factors and satisfy $$P^a+Q^b=R^c$$ and $$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>1.$$
[i](tatari/nightmare)[/i]
1975 Vietnam National Olympiad, 5
Show that the sum of the (local) maximum and minimum values of the function $\frac{tan(3x)}{tan^3x}$ on the interval $\big(0, \frac{\pi }{2}\big)$ is rational.
2015 India PRMO, 14
$14.$ If $3^x+2^y=985.$ and $3^x-2^y=473.$ What is the value of $xy ?$
2017-IMOC, A4
Show that for all non-constant functions $f:\mathbb R\to\mathbb R$, there are two real numbers $x,y$ such that
$$f(x+f(y))>xf(y)+x.$$
India EGMO 2021 TST, 2
Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of
$$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$
[i]Israel[/i]
2008 Mongolia Team Selection Test, 3
Find the maximum number $ C$ such that for any nonnegative $ x,y,z$ the inequality
$ x^3 \plus{} y^3 \plus{} z^3 \plus{} C(xy^2 \plus{} yz^2 \plus{} zx^2) \ge (C \plus{} 1)(x^2 y \plus{} y^2 z \plus{} z^2 x)$ holds.
2019 Belarus Team Selection Test, 5.1
A function $f:\mathbb N\to\mathbb N$, where $\mathbb N$ is the set of positive integers, satisfies the following condition: for any positive integers $m$ and $n$ ($m>n$) the number $f(m)-f(n)$ is divisible by $m-n$.
Is the function $f$ necessarily a polynomial? (In other words, is it true that for any such function there exists a polynomial $p(x)$ with real coefficients such that $f(n)=p(n)$ for all positive integers $n$?)
[i](Folklore)[/i]
2000 Switzerland Team Selection Test, 2
Real numbers $a_1,a_2,...,a_{16}$ satisfy the conditions $\sum_{i=1}^{16}a_i = 100$ and $\sum_{i=1}^{16}a_i^2 = 1000$ .
What is the greatest possible value of $a_16$?
2018 JBMO TST-Turkey, 1
Let $a, b, c$ be distinct real numbers and $x$ be a real number. Given that three numbers among
$ax^2+bx+c, ax^2+cx+b, bx^2+cx+a, bx^2+ax+c, cx^2+ax+b, cx^2+bx+a$
coincide, prove that $x=1$.
1990 IMO Shortlist, 18
Let $ a, b \in \mathbb{N}$ with $ 1 \leq a \leq b,$ and $ M \equal{} \left[\frac {a \plus{} b}{2} \right].$ Define a function $ f: \mathbb{Z} \mapsto \mathbb{Z}$ by
\[ f(n) \equal{} \begin{cases} n \plus{} a, & \text{if } n \leq M, \\
n \minus{} b, & \text{if } n >M. \end{cases}
\]
Let $ f^1(n) \equal{} f(n),$ $ f_{i \plus{} 1}(n) \equal{} f(f^i(n)),$ $ i \equal{} 1, 2, \ldots$ Find the smallest natural number $ k$ such that $ f^k(0) \equal{} 0.$
2008 VJIMC, Problem 1
Find all complex roots (with multiplicities) of the polynomial
$$p(x)=\sum_{n=1}^{2008}(1004-|1004-n|)x^n.$$
2025 Belarusian National Olympiad, 11.1
Numbers $1,\ldots,2025$ are written in a circle in increasing order. For every three consecutive numbers $i,j,k$ we consider the polynomial $(x-i)(x-j)(x-k)$. Let $s(x)$ be the sum of all $2025$ these polynomials. Prove that $s(x)$ has an integral root.
[i]A. Voidelevich[/i]
2000 Harvard-MIT Mathematics Tournament, 9
$f$ is a polynomial of degree $n$ with integer coefficients and $f(x)=x^2+1$ for $x=1,2,\cdot ,n$. What are the possible values for $f(0)$?
2010 NZMOC Camp Selection Problems, 1
For any two positive real numbers $x_0 > 0$, $x_1 > 0$, a sequence of real numbers is defined recursively by $$x_{n+1} =\frac{4 \max\{x_n, 4\}}{x_{n-1}}$$ for $n \ge 1$. Find $x_{2010}$.
2010 IFYM, Sozopol, 5
Let $n>1$ be a natural number. Find the real values of the parameter $a$, for which the equation $\sqrt[n]{1+x}+\sqrt[n]{1-x}=a$ has a single real root.
2015 Romania National Olympiad, 4
Find all non-constant polynoms $ f\in\mathbb{Q} [X] $ that don't have any real roots in the interval $ [0,1] $ and for which there exists a function $ \xi :[0,1]\longrightarrow\mathbb{Q} [X]\times\mathbb{Q} [X], \xi (x):=\left( g_x,h_x \right) $ such that $ h_x(x)\neq 0 $ and $ \int_0^x \frac{dt}{f(t)} =\frac{g_x(x)}{h_x(x)} , $ for all $ x\in [0,1] . $
Russian TST 2018, P4
Let $a_1,\ldots,a_{n+1}$ be positive real numbers satisfying $1/(a_1+1)+\cdots+1/(a_{n+1}+1)=n$. Prove that \[\sum_{i=1}^{n+1}\prod_{j\neq i}\sqrt[n]{a_j}\leqslant\frac{n+1}{n}.\]
1991 IMO Shortlist, 13
Given any integer $ n \geq 2,$ assume that the integers $ a_1, a_2, \ldots, a_n$ are not divisible by $ n$ and, moreover, that $ n$ does not divide $ \sum^n_{i\equal{}1} a_i.$ Prove that there exist at least $ n$ different sequences $ (e_1, e_2, \ldots, e_n)$ consisting of zeros or ones such $ \sum^n_{i\equal{}1} e_i \cdot a_i$ is divisible by $ n.$
1978 Romania Team Selection Test, 9
A sequence $ \left( x_n\right)_{n\ge 0} $ of real numbers satisfies $ x_0>1=x_{n+1}\left( x_n-\left\lfloor x_n\right\rfloor\right) , $ for each $ n\ge 1. $
Prove that if $ \left( x_n\right)_{n\ge 0} $ is periodic, then $ x_0 $ is a root of a quadratic equation. Study the converse.