This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2006 Indonesia MO, 2

Let $ a,b,c$ be positive integers. If $ 30|a\plus{}b\plus{}c$, prove that $ 30|a^5\plus{}b^5\plus{}c^5$.

MOAA Individual Speed General Rounds, 2018 Ind

[b]p1.[/b] Find $20 \cdot 18 + 20 + 18 + 1$. [b]p2.[/b] Suzie’s Ice Cream has $10$ flavors of ice cream, $5$ types of cones, and $5$ toppings to choose from. An ice cream cone consists of one flavor, one cone, and one topping. How many ways are there for Sebastian to order an ice cream cone from Suzie’s? [b]p3.[/b] Let $a = 7$ and $b = 77$. Find $\frac{(2ab)^2}{(a+b)^2-(a-b)^2}$ . [b]p4.[/b] Sebastian invests $100,000$ dollars. On the first day, the value of his investment falls by $20$ percent. On the second day, it increases by $25$ percent. On the third day, it falls by $25$ percent. On the fourth day, it increases by $60$ percent. How many dollars is his investment worth by the end of the fourth day? [b]p5.[/b] Square $ABCD$ has side length $5$. Points $K,L,M,N$ are on segments $AB$,$BC$,$CD$,$DA$ respectively,such that $MC = CL = 2$ and $NA = AK = 1$. The area of trapezoid $KLMN$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$. [b]p6.[/b] Suppose that $p$ and $q$ are prime numbers. If $p + q = 30$, find the sum of all possible values of $pq$. [b]p7.[/b] Tori receives a $15 - 20 - 25$ right triangle. She cuts the triangle into two pieces along the altitude to the side of length $25$. What is the difference between the areas of the two pieces? [b]p8.[/b] The factorial of a positive integer $n$, denoted $n!$, is the product of all the positive integers less than or equal to $n$. For example, $1! = 1$ and $5! = 120$. Let $m!$ and $n!$ be the smallest and largest factorial ending in exactly $3$ zeroes, respectively. Find $m + n$. [b]p9.[/b] Sam is late to class, which is located at point $B$. He begins his walk at point $A$ and is only allowed to walk on the grid lines. He wants to get to his destination quickly; how many paths are there that minimize his walking distance? [img]https://cdn.artofproblemsolving.com/attachments/a/5/764e64ac315c950367357a1a8658b08abd635b.png[/img] [b]p10.[/b] Mr. Iyer owns a set of $6$ antique marbles, where $1$ is red, $2$ are yellow, and $3$ are blue. Unfortunately, he has randomly lost two of the marbles. His granddaughter starts drawing the remaining $4$ out of a bag without replacement. She draws a yellow marble, then the red marble. Suppose that the probability that the next marble she draws is blue is equal to $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positiveintegers. What is $m + n$? [b]p11.[/b] If $a$ is a positive integer, what is the largest integer that will always be a factor of $(a^3+1)(a^3+2)(a^3+3)$? [b]p12.[/b] What is the largest prime number that is a factor of $160,401$? [b]p13.[/b] For how many integers $m$ does the equation $x^2 + mx + 2018 = 0$ have no real solutions in $x$? [b]p14.[/b] What is the largest palindrome that can be expressed as the product of two two-digit numbers? A palindrome is a positive integer that has the same value when its digits are reversed. An example of a palindrome is $7887887$. [b]p15.[/b] In circle $\omega$ inscribe quadrilateral $ADBC$ such that $AB \perp CD$. Let $E$ be the intersection of diagonals $AB$ and $CD$, and suppose that $EC = 3$, $ED = 4$, and $EB = 2$. If the radius of $\omega$ is $r$, then $r^2 =\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Determine $m + n$. [b]p16.[/b] Suppose that $a, b, c$ are nonzero real numbers such that $2a^2 + 5b^2 + 45c^2 = 4ab + 6bc + 12ca$. Find the value of $\frac{9(a + b + c)^3}{5abc}$ . [b]p17.[/b] Call a positive integer n spicy if there exist n distinct integers $k_1, k_2, ... , k_n$ such that the following two conditions hold: $\bullet$ $|k_1| + |k_2| +... + |k_n| = n2$, $\bullet$ $k_1 + k_2 + ...+ k_n = 0$. Determine the number of spicy integers less than $10^6$. [b]p18.[/b] Consider the system of equations $$|x^2 - y^2 - 4x + 4y| = 4$$ $$|x^2 + y^2 - 4x - 4y| = 4.$$ Find the sum of all $x$ and $y$ that satisfy the system. [b]p19.[/b] Determine the number of $8$ letter sequences, consisting only of the letters $W,Q,N$, in which none of the sequences $WW$, $QQQ$, or $NNNN$ appear. For example, $WQQNNNQQ$ is a valid sequence, while $WWWQNQNQ$ is not. [b]p20.[/b] Triangle $\vartriangle ABC$ has $AB = 7$, $CA = 8$, and $BC = 9$. Let the reflections of $A,B,C$ over the orthocenter H be $A'$,$B'$,$C'$. The area of the intersection of triangles $ABC$ and $A'B'C'$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ , where $b$ is squarefree and $a$ and $c$ are relatively prime. determine $a+b+c$. (The orthocenter of a triangle is the intersection of its three altitudes.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Purple Comet Problems, 20

For integers a, b, c, and d the polynomial $p(x) =$ $ax^3 + bx^2 + cx + d$ satisfies $p(5) + p(25) = 1906$. Find the minimum possible value for $|p(15)|$.

1990 China National Olympiad, 5

Given a finite set $X$, let $f$ be a rule such that $f$ maps every [i]even-element-subset[/i] $E$ of $X$ (i.e. $E \subseteq X$, $|E|$ is even) into a real number $f(E)$. Suppose that $f$ satisfies the following conditions: (I) there exists an [i]even-element-subset[/i] $D$ of $X$ such that $f(D)>1990$; (II) for any two disjoint [i]even-element-subsets [/i]$A,B$ of $X$, equation $f(A\cup B)=f(A)+f(B)-1990$ holds. Prove that there exist two subsets $P,Q$ of $X$ satisfying: (1) $P\cap Q=\emptyset$, $P\cup Q=X$; (2) for any [i]non-even-element-subset [/i]$S$ of $P$ (i.e. $S\subseteq P$, $|S|$ is odd), we have $f(S)>1990$; (3) for any [i]even-element-subset[/i] $T$ of $Q$, we have $f(T)\le 1990$.

1998 Belarus Team Selection Test, 2

Tags: algebra , sequence
For any sequence of real numbers $(a_n), n \in N$, define a new sequence $(b_n)$ as $b_n =a_{n+2}+sa_{n+1}+ta_{n}$, where $s,t$ are given real numbers. Find all ordered pairs $(s,t)$ satisfying the following property: any sequence $(a_n)$ converges as soon as the sequence $(b_n)$ converges.

2014 BAMO, 3

Suppose that for two real numbers $x$ and $y$ the following equality is true: $$(x+ \sqrt{1+ x^2})(y+\sqrt{1+y^2})=1$$ Find (with proof) the value of $x+y$.

1956 Polish MO Finals, 1

Solve the system of equations $$ \begin{array}{l}<br /> x^2y^2 + x^2z^2 = axyz\\<br /> y^2z^2 + y^2x^2 = bxyz\\<br /> z^2x^2 + z^2y^2 = cxyz.<br /> \end{array}$$

DMM Team Rounds, 2011

[b]p1.[/b] How many primes $p < 100$ satisfy $p = a^2 + b^2$ for some positive integers $a$ and $b$? [b]p2. [/b] For $a < b < c$, there exists exactly one Pythagorean triple such that $a + b + c = 2000$. Find $a + c - b$. [b]p3.[/b] Five points lie on the surface of a sphere of radius $ 1$ such that the distance between any two points is at least $\sqrt2$. Find the maximum volume enclosed by these five points. [b]p4.[/b] $ABCDEF$ is a convex hexagon with $AB = BC = CD = DE = EF = FA = 5$ and $AC = CE = EA = 6$. Find the area of $ABCDEF$. [b]p5.[/b] Joe and Wanda are playing a game of chance. Each player rolls a fair $11$-sided die, whose sides are labeled with numbers $1, 2, ... , 11$. Let the result of the Joe’s roll be $X$, and the result of Wanda’s roll be $Y$ . Joe wins if $XY$ has remainder $ 1$ when divided by $11$, and Wanda wins otherwise. What is the probability that Joe wins? [b]p6.[/b] Vivek picks a number and then plays a game. At each step of the game, he takes the current number and replaces it with a new number according to the following rule: if the current number $n$ is divisible by $3$, he replaces $n$ with $\frac{n}{3} + 2$, and otherwise he replaces $n$ with $\lfloor 3 \log_3 n \rfloor$. If he starts with the number $3^{2011}$, what number will he have after $2011$ steps? Note that $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$. [b]p7.[/b] Define a sequence an of positive real numbers with a$_1 = 1$, and $$a_{n+1} =\frac{4a^2_n - 1}{-2 + \frac{4a^2_n -1}{-2+ \frac{4a^2_n -1}{-2+...}}}.$$ What is $a_{2011}$? [b]p8.[/b] A set $S$ of positive integers is called good if for any $x, y \in S$ either $x = y$ or $|x - y| \ge 3$. How many subsets of $\{1, 2, 3, ..., 13\}$ are good? Include the empty set in your count. [b]p9.[/b] Find all pairs of positive integers $(a, b)$ with $a \le b$ such that $10 \cdot lcm \, (a, b) = a^2 + b^2$. Note that $lcm \,(m, n)$ denotes the least common multiple of $m$ and $n$. [b]p10.[/b] For a natural number $n$, $g(n)$ denotes the largest odd divisor of $n$. Find $$g(1) + g(2) + g(3) + ... + g(2^{2011})$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1979 Bulgaria National Olympiad, Problem 4

For each real number $k$, denote by $f(k)$ the larger of the two roots of the quadratic equation $$(k^2+1)x^2+10kx-6(9k^2+1)=0.$$Show that the function $f(k)$ attains a minimum and maximum and evaluate these two values.

2009 Ukraine Team Selection Test, 9

Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$; (ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$. Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list] [i]Proposed by Hans Zantema, Netherlands[/i]

1980 IMO, 1

Given a sequence $\{a_n\}$ of real numbers such that $|a_{k+m} - a_k - a_m| \leq 1$ for all positive integers $k$ and $m$, prove that, for all positive integers $p$ and $q$, \[|\frac{a_p}{p} - \frac{a_q}{q}| < \frac{1}{p} + \frac{1}{q}.\]

DMM Team Rounds, 2008

[b]p1.[/b] $ABCD$ is a convex quadrilateral such that $AB = 20$, $BC = 24$, $CD = 7$, $DA = 15$, and $\angle DAB$ is a right angle. What is the area of $ABCD$? [b]p2.[/b] A triangular number is one that can be written in the form $1 + 2 +...·+n$ for some positive number $n$. $ 1$ is clearly both triangular and square. What is the next largest number that is both triangular and square? [b]p3.[/b] Find the last (i.e. rightmost) three digits of $9^{2008}$. [b]p4.[/b] When expressing numbers in a base $b \ge 11$, you use letters to represent digits greater than $9$. For example, $A$ represents $10$ and $B$ represents $11$, so that the number $110$ in base $10$ is $A0$ in base $11$. What is the smallest positive integer that has four digits when written in base $10$, has at least one letter in its base $12$ representation, and no letters in its base $16$ representation? [b]p5.[/b] A fly starts from the point $(0, 16)$, then flies straight to the point $(8, 0)$, then straight to the point $(0, -4)$, then straight to the point $(-2, 0)$, and so on, spiraling to the origin, each time intersecting the coordinate axes at a point half as far from the origin as its previous intercept. If the fly flies at a constant speed of $2$ units per second, how many seconds will it take the fly to reach the origin? [b]p6.[/b] A line segment is divided into two unequal lengths so that the ratio of the length of the short part to the length of the long part is the same as the ratio of the length of the long part to the length of the whole line segment. Let $D$ be this ratio. Compute $$D^{-1} + D^{[D^{-1}+D^{(D^{-1}+D^2)}]}.$$ [b]p7.[/b] Let $f(x) = 4x + 2$. Find the ordered pair of integers $(P, Q)$ such that their greatest common divisor is $1, P$ is positive, and for any two real numbers $a$ and $b$, the sentence: “$P a + Qb \ge 0$” is true if and only if the following sentence is true: “For all real numbers x, if $|f(x) - 6| < b$, then $|x - 1| < a$.” [b]p8.[/b] Call a rectangle “simple” if all four of its vertices have integers as both of their coordinates and has one vertex at the origin. How many simple rectangles are there whose area is less than or equal to $6$? [b]p9.[/b] A square is divided into eight congruent triangles by the diagonals and the perpendicular bisectors of its sides. How many ways are there to color the triangles red and blue if two ways that are reflections or rotations of each other are considered the same? [b]p10.[/b] In chess, a knight can move by jumping to any square whose center is $\sqrt5$ units away from the center of the square that it is currently on. For example, a knight on the square marked by the horse in the diagram below can move to any of the squares marked with an “X” and to no other squares. How many ways can a knight on the square marked by the horse in the diagram move to the square with a circle in exactly four moves? [img]https://cdn.artofproblemsolving.com/attachments/d/9/2ef9939642362182af12089f95836d4e294725.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Italy TST, 3

Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all integers $m,n$, \[f(m - n + f(n)) = f(m) + f(n).\]

2006 Czech-Polish-Slovak Match, 1

Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.

2024 Belarus Team Selection Test, 4.1

Six integers $a,b,c,d,e,f$ satisfy: $\begin{cases} ace+3ebd-3bcf+3adf=5 \\ bce+acf-ade+3bdf=2 \end{cases}$ Find all possible values of $abcde$ [i]D. Bazyleu[/i]

2012 European Mathematical Cup, 4

Olja writes down $n$ positive integers $a_1, a_2, \ldots, a_n$ smaller than $p_n$ where $p_n$ denotes the $n$-th prime number. Oleg can choose two (not necessarily different) numbers $x$ and $y$ and replace one of them with their product $xy$. If there are two equal numbers Oleg wins. Can Oleg guarantee a win? [i]Proposed by Matko Ljulj.[/i]

Russian TST 2019, P3

Let $m,n\geq 2$ be integers. Let $f(x_1,\dots, x_n)$ be a polynomial with real coefficients such that $$f(x_1,\dots, x_n)=\left\lfloor \frac{x_1+\dots + x_n}{m} \right\rfloor\text{ for every } x_1,\dots, x_n\in \{0,1,\dots, m-1\}.$$ Prove that the total degree of $f$ is at least $n$.

1999 Brazil National Olympiad, 2

Show that, if $\sqrt{2}$ is written in decimal notation, there is at least one nonzero digit at the interval of 1,000,000-th and 3,000,000-th digits.

VMEO III 2006, 10.4

Tags: algebra , trinomial
Find the least real number $\alpha$ such that there is a real number $\beta$ so that for all triples of real numbers $(a, b,c)$ satisfying $2006a + 10b + c = 0$, the equation $ax^2 + bx + c = 0$ always has real root in the interval $[\beta, \beta + \alpha]$.

2022 Brazil National Olympiad, 5

Let $n$ be a positive integer number. Define $S(n)$ to be the least positive integer such that $S(n) \equiv n \pmod{2}$, $S(n) \geq n$, and such that there are [b]not[/b] positive integers numbers $k,x_1,x_2,...,x_k$ such that $n=x_1+x_2+...+x_k$ and $S(n)=x_1^2+x_2^2+...+x_k^2$. Prove that there exists a real constant $c>0$ and a positive integer $n_0$ such that, for all $n \geq n_0$, $S(n) \geq cn^{\frac{3}{2}}$.

Kvant 2024, M2814

Tags: algebra
Positive numbers $a$, $b$ and $c$ are such that $b+c=a^2$. Find the value of the expression \[ \frac{\sqrt{a+\sqrt{b}}+\sqrt{a+\sqrt{c}}}{\sqrt{a-\sqrt{b}+\sqrt{a-\sqrt{c}}}}. \] [i]From the folklore[/i]

2013 Junior Balkan Team Selection Tests - Romania, 2

Let $a, b, c$ be positive real numbers such that $a + b + c = 1$. Show that $$\frac{1 - a^2}{a + bc} + \frac{1 - b^2}{b + ca} + \frac{1 - c^2}{c + ab} \ge 6$$

2023 CUBRMC, 1

Let $x, y, z$ be positive real numbers. Prove that $$\sqrt{(z + x)(z + y)} - z \ge \sqrt{xy}.$$

2015 Ukraine Team Selection Test, 8

Find all functions $f: R \to R$ such that $f(x)f(yf(x)-1)=x^2f(y)-f(x)$ for all real $x ,y$

1999 May Olympiad, 3

On each step of a ladder with $10$ steps there is a frog. Each of them can, in one jump, be placed on another step, but when it does, at the same time, another frog will jump the same number of steps in the opposite direction: one goes up and another goes down. Will the frogs manage to get all together on the same step?