This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1976 IMO Shortlist, 5

We consider the following system with $q=2p$: \[\begin{matrix} a_{11}x_{1}+\ldots+a_{1q}x_{q}=0,\\ a_{21}x_{1}+\ldots+a_{2q}x_{q}=0,\\ \ldots ,\\ a_{p1}x_{1}+\ldots+a_{pq}x_{q}=0,\\ \end{matrix}\] in which every coefficient is an element from the set $\{-1,0,1\}$$.$ Prove that there exists a solution $x_{1}, \ldots,x_{q}$ for the system with the properties: [b]a.)[/b] all $x_{j}, j=1,\ldots,q$ are integers$;$ [b]b.)[/b] there exists at least one j for which $x_{j} \neq 0;$ [b]c.)[/b] $|x_{j}| \leq q$ for any $j=1, \ldots ,q.$

1990 Tournament Of Towns, (275) 3

There are two identical clocks on the wall, one showing the current Moscow time and the other showing current local time. The minimum distance between the ends of their hour hands equals $m$ and the maximum distance equals $M$. Find the distance between the centres of the clocks. (S Fomin, Leningrad)

2017 Saudi Arabia IMO TST, 3

For integer $n > 1$, consider $n$ cube polynomials $P_1(x), ..., P_n(x)$ such that each polynomial has $3$ distinct real roots. Denote $S$ as the set of roots of following equation $P_1(x)P_2(x)P_3(x)... P_n(x) = 0$. It is also known that for each $1 \le i < j \le n, P_i(x)P_j(x) = 0$ has $5$ distinct real roots. 1. Prove that if for each $a, b \in S$, there is exactly one $i \in\{1,2, 3,..., n\}$ such that $P_i(a) = P_i(b) = 0$ then $n = 7$. 2. Prove that if $n > 7$ then $|S| = 2n + 1$.

2023 Spain Mathematical Olympiad, 4

Let $x_1\leq x_2\leq x_3\leq x_4$ be real numbers. Prove that there exist polynomials of degree two $P(x)$ and $Q(x)$ with real coefficients such that $x_1$, $x_2$, $x_3$ and $x_4$ are the roots of $P(Q(x))$ if and only if $x_1+x_4=x_2+x_3$.

2022 Abelkonkurransen Finale, 4a

Find all functions $f:\mathbb R^+ \to \mathbb R^+$ satisfying \begin{align*} f\left(\frac{1}{x}\right) \geq 1 - \frac{\sqrt{f(x)f\left(\frac{1}{x}\right)}}{x} \geq x^2 f(x), \end{align*} for all positive real numbers $x$.

2009 QEDMO 6th, 8

Tags: algebra , sum
Given $n$ integers $a_1, a_2, ..., a_n$, which $a_1 = 1$ and $a_i \le a_{i + 1} \le 2a_i$ for each $i \in \{1,2,...,n-1\}$ . Prove that if $a_1 + a_2 +... + a_n$ is even, you do select some of the numbers so that their sum equals $\frac{a_1 + a_2 +... + a_n}{2}$ .

2024 Princeton University Math Competition, B2

Tags: algebra
Alien Tanvi has a favorite number, but somehow she’s managed to forget it. She remembers that it can be written as $x^2+\tfrac{1}{x^2},$ where $x$ is a real number satisfying $x^4+4x^2+\tfrac{4}{x^2}+\tfrac{1}{x^4}=523.$ What is Alien Tanvi's favorite number?

2014 VJIMC, Problem 1

Find all complex numbers $z$ such that $|z^3+2-2i|+z\overline z|z|=2\sqrt2.$

1985 Tournament Of Towns, (092) T3

Three real numbers $a, b$ and $c$ are given . It is known that $a + b + c >0 , bc+ ca + ab > 0$ and $abc > 0$ . Prove that $a > 0 , b > 0$ and $c > 0$ .

1968 Poland - Second Round, 4

Prove that if the numbers $ a, b, c $, are the lengths of the sides of a triangle and the sum of the numbers $x,y,z$ is zero, then $$a^2yz + b^2zx + c^2xy \leq 0.$$

2017 China Team Selection Test, 5

Let $ \varphi(x)$ be a cubic polynomial with integer coefficients. Given that $ \varphi(x)$ has have 3 distinct real roots $u,v,w $ and $u,v,w $ are not rational number. there are integers $ a, b,c$ such that $u=av^2+bv+c$. Prove that $b^2 -2b -4ac - 7$ is a square number .

2017 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] Ten children arrive at a birthday party and leave their shoes by the door. All the children have different shoe sizes. Later, as they leave one at a time, each child randomly grabs a pair of shoes their size or larger. After some kids have left, all of the remaining shoes are too small for any of the remaining children. What is the greatest number of shoes that might remain by the door? [b]p2.[/b] Turans, the king of Saturn, invented a new language for his people. The alphabet has only $6$ letters: A, N, R, S, T, U; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the first word is SATURN. Which word follows immediately after TURANS? [b]p3.[/b] Benji chooses five integers. For each pair of these numbers, he writes down the pair's sum. Can all ten sums end with different digits? [b]p4.[/b] Nine dwarves live in a house with nine rooms arranged in a $3\times3$ square. On Monday morning, each dwarf rubs noses with the dwarves in the adjacent rooms that share a wall. On Monday night, all the dwarves switch rooms. On Tuesday morning, they again rub noses with their adjacent neighbors. On Tuesday night, they move again. On Wednesday morning, they rub noses for the last time. Show that there are still two dwarves who haven't rubbed noses with one another. [b]p5.[/b] Anna and Bobby take turns placing rooks in any empty square of a pyramid-shaped board with $100$ rows and $200$ columns. If a player places a rook in a square that can be attacked by a previously placed rook, he or she loses. Anna goes first. Can Bobby win no matter how well Anna plays? [img]https://cdn.artofproblemsolving.com/attachments/7/5/b253b655b6740b1e1310037da07a0df4dc9914.png[/img] [u]Round 2[/u] [b]p6.[/b] Some boys and girls, all of different ages, had a snowball fight. Each girl threw one snowball at every kid who was older than her. Each boy threw one snowball at every kid who was younger than him. Three friends were hit by the same number of snowballs, and everyone else took fewer hits than they did. Prove that at least one of the three is a girl. [b]p7.[/b] Last year, jugglers from around the world travelled to Jakarta to participate in the Jubilant Juggling Jamboree. The festival lasted $32$ days, with six solo performances scheduled each day. The organizers noticed that for any two days, there was exactly one juggler scheduled to perform on both days. No juggler performed more than once on a single day. Prove there was a juggler who performed every day. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Costa Rica - Final Round, 5

Let $f : N\to N$ such that $$f(1) = 0\,\, , \,\,f(3n) = 2f(n) + 2\,\, , \,\,f(3n-1) = 2f(n) + 1\,\, , \,\,f(3n-2) = 2f(n).$$ Determine the smallest value of $n$ so that $f (n) = 2014.$

2020 Romanian Master of Mathematics Shortlist, A1

Prove that for all sufficiently large positive integers $d{}$, at least $99\%$ of the polynomials of the form \[\sum_{i\leqslant d}\sum_{j\leqslant d}\pm x^iy^j\]are irreducible over the integers.

2007 China Northern MO, 2

Let $ f$ be a function given by $ f(x) = \lg(x+1)-\frac{1}{2}\cdot\log_{3}x$. a) Solve the equation $ f(x) = 0$. b) Find the number of the subsets of the set \[ \{n | f(n^{2}-214n-1998) \geq 0,\ n \in\mathbb{Z}\}.\]

2018 Czech-Polish-Slovak Match, Source

[url=https://artofproblemsolving.com/community/c678145][b]Czech-Polish-Slovak Match 2018[/b][/url] [b]Austria, 24 - 27 June 2018[/b] [url=http://artofproblemsolving.com/community/c6h1667029p10595005][b]Problem 1.[/b][/url] Determine all functions $f : \mathbb R \to \mathbb R$ such that for all real numbers $x$ and $y$, $$f(x^2 + xy) = f(x)f(y) + yf(x) + xf(x+y).$$ [i]Proposed by Walther Janous, Austria[/i] [url=http://artofproblemsolving.com/community/c6h1667030p10595011][b]Problem 2.[/b][/url] Let $ABC$ be an acute scalene triangle. Let $D$ and $E$ be points on the sides $AB$ and $AC$, respectively, such that $BD=CE$. Denote by $O_1$ and $O_2$ the circumcentres of the triangles $ABE$ and $ACD$, respectively. Prove that the circumcircles of the triangles $ABC, ADE$, and $AO_1O_2$ have a common point different from $A$. [i]Proposed by Patrik Bak, Slovakia[/i] [url=http://artofproblemsolving.com/community/c6h1667031p10595016][b]Problem 3.[/b][/url] There are $2018$ players sitting around a round table. At the beginning of the game we arbitrarily deal all the cards from a deck of $K$ cards to the players (some players may receive no cards). In each turn we choose a player who draws one card from each of the two neighbors. It is only allowed to choose a player whose each neighbor holds a nonzero number of cards. The game terminates when there is no such player. Determine the largest possible value of $K$ such that, no matter how we deal the cards and how we choose the players, the game always terminates after a finite number of turns. [i]Proposed by Peter Novotný, Slovakia[/i] [url=http://artofproblemsolving.com/community/c6h1667033p10595021][b]Problem 4.[/b][/url] Let $ABC$ be an acute triangle with the perimeter of $2s$. We are given three pairwise disjoint circles with pairwise disjoint interiors with the centers $A, B$, and $C$, respectively. Prove that there exists a circle with the radius of $s$ which contains all the three circles. [i]Proposed by Josef Tkadlec, Czechia[/i] [url=http://artofproblemsolving.com/community/c6h1667034p10595023][b]Problem 5.[/b][/url] In a $2 \times 3$ rectangle there is a polyline of length $36$, which can have self-intersections. Show that there exists a line parallel to two sides of the rectangle, which intersects the other two sides in their interior points and intersects the polyline in fewer than $10$ points. [i]Proposed by Josef Tkadlec, Czechia and Vojtech Bálint, Slovakia[/i] [url=http://artofproblemsolving.com/community/c6h1667036p10595032][b]Problem 6.[/b][/url] We say that a positive integer $n$ is [i]fantastic[/i] if there exist positive rational numbers $a$ and $b$ such that $$ n = a + \frac 1a + b + \frac 1b.$$ [b](a)[/b] Prove that there exist infinitely many prime numbers $p$ such that no multiple of $p$ is fantastic. [b](b)[/b] Prove that there exist infinitely many prime numbers $p$ such that some multiple of $p$ is fantastic. [i]Proposed by Walther Janous, Austria[/i]

2024 Taiwan TST Round 2, A

Let $\mathbb{R}_+$ be the set of positive real numbers. Find all functions $f\colon \mathbb{R}_+ \to \mathbb{R}_+$ such that \[f(xy + x + y) + f \left( \frac1x \right) f\left( \frac1y \right) = 1\] for every $x$, $y\in \mathbb{R}_+$. [i]Proposed by Li4 and Untro368.[/i]

1985 Poland - Second Round, 4

Prove that if for natural numbers $ a, b $ the number $ \sqrt[3]{a} + \sqrt[3]{b} $ is rational, then $ a, b $ are cubes of natural numbers.

2010 All-Russian Olympiad Regional Round, 9.5

Tags: algebra
Dunno wrote down $11$ natural numbers in a circle. For every two adjacent numbers, he calculated their difference. As a result among the differences found there were four units, four twos and three threes. Prove that Dunno made a mistake somewhere an error.

2020 HK IMO Preliminary Selection Contest, 1

Tags: digit , algebra
Let $n=(10^{2020}+2020)^2$. Find the sum of all the digits of $n$.

2020 Princeton University Math Competition, A7

Tags: algebra
Suppose that $p$ is the unique monic polynomial of minimal degree such that its coefficients are rational numbers and one of its roots is $\sin \frac{2\pi}{7} + \cos \frac{4\pi}{7}$. If $p(1) = \frac{a}{b}$, where $a, b$ are relatively prime integers, find $|a + b|$.

1998 USAMTS Problems, 3

Let $f$ be a polynomial of degree $98$, such that $f (k) =\frac{1}{k}$ for $k=1,2,3,\ldots,99$. Determine $f(100)$.

2001 Stanford Mathematics Tournament, 5

What quadratic polynomial whose coefficient of $x^2$ is $1$ has roots which are the complex conjugates of the solutions of $x^2 -6x+ 11 = 2xi-10i$? (Note that the complex conjugate of $a+bi$ is $a-bi$, where a and b are real numbers.)

2006 Hanoi Open Mathematics Competitions, 4

Tags: algebra
For any real numbers $x,y$ that satisfies the equation $$x+y-xy=155$$ and $$x^2+y^2=325$$, Find $|x^3-y^3|$

1979 IMO Shortlist, 15

Determine all real numbers a for which there exists positive reals $x_{1}, \ldots, x_{5}$ which satisfy the relations $ \sum_{k=1}^{5} kx_{k}=a,$ $ \sum_{k=1}^{5} k^{3}x_{k}=a^{2},$ $ \sum_{k=1}^{5} k^{5}x_{k}=a^{3}.$