Found problems: 15925
2013 Chile National Olympiad, 4
Consider a function f defined on the positive integers that meets the following conditions: $$f(1) = 1 \, , \,\, f(2n) = 2f(n) \, , \,\, nf(2n + 1) = (2n + 1)(f(n) + n) $$ for all $n \ge 1$.
a) Prove that $f(n)$ is an integer for all $n$.
b) Find all positive integers $m$ less than $2013$ that satisfy the equation $f(m) = 2m$.
2009 Stanford Mathematics Tournament, 2
Factor completely the expression $(a-b)^3+(b-c)^3+(c-a)^3$
1982 IMO Longlists, 4
[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes
\[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\]
[b](b)[/b] Find the rearrangement that minimizes $Q.$
2013 Federal Competition For Advanced Students, Part 2, 1
For each pair $(a,b)$ of positive integers, determine all non-negative integers $n$ such that \[b+\left\lfloor{\frac{n}{a}}\right\rfloor=\left\lceil{\frac{n+b}{a}}\right\rceil.\]
2021 Auckland Mathematical Olympiad, 1
Find all real numbers $x$ for which $$\sqrt{\frac{x^3 - 8}{x}} > x - 2.$$
2022 Belarusian National Olympiad, 9.5
Given $n \geq 2$ distinct integers, which are bigger than $-10$. It turned out that the amount of odd numbers among them is equal to the biggest even number, and the amount of even to the biggest of odd.
a) Find the smallest $n$ possible
b) Find the biggest $n$ possible
2014 Saudi Arabia GMO TST, 4
Let $X$ be a set of rational numbers satisfying the following two conditions:
(a) The set $X$ contains at least two elements,
(b) For any $x, y$ in $X$, if $x \ne y$ then there exists $z$ in $X$ such that either $\left| \frac{x- z}{y - z} \right|= 2$ or $\left| \frac{y -z}{x - z} \right|= 2$ .
Prove that $X$ contains infinitely many elements.
2019 Purple Comet Problems, 1
Ivan, Stefan, and Katia divided $150$ pieces of candy among themselves so that Stefan and Katia each got twice as many pieces as Ivan received. Find the number of pieces of candy Ivan received.
1986 India National Olympiad, 7
If $ a$, $ b$, $ x$, $ y$ are integers greater than 1 such that $ a$ and $ b$ have no common factor except 1 and $ x^a \equal{} y^b$ show that $ x \equal{} n^b$, $ y \equal{} n^a$ for some integer $ n$ greater than 1.
1991 Austrian-Polish Competition, 2
Find all solutions $(x,y,z)$ to the system
$$\begin{cases}(x^2 - 6x + 13)y = 20 \\
(y^2 - 6y + 13)z = 20 \\
(z^2 - 6z + 13)x = 20 \end{cases}$$
1976 Chisinau City MO, 120
Find the product of all numbers of the form $\sqrt[m]{m}-\sqrt[k]{k}$ , $m ,k$ are natural numbers satisfying the inequalities $1 \le k < m \le n$, where $n> 3$.
2023 New Zealand MO, 3
Find the sum of the smallest and largest possible values for $x$ which satisfy the following equation.
$$9^{x+1} + 2187 = 3^{6x-x^2}.$$
1997 Estonia National Olympiad, 5
In the creation of the world there is a lonely island inhabited by dragons, snakes and crocodiles. Every inhabitant eats once a day: every snake eats one dragon for breakfast, every dragon eats one crocodile for lunch and every crocodile eats a snake for dinner. Find the total number of dragons, snakes and crocodiles on the island immediately after the creation of the world (at the beginning of the first day), when, at the end of the sixth day, there is only one inhabitant alive on the island, only one crocodile and during these six days none of the inhabitants of the island considered any to give up their meals due to lack of food.
2007 Flanders Math Olympiad, 4
If $f,g: \mathbb{R} \to \mathbb{R}$ are functions that satisfy $f(x+g(y)) = 2x+y $ $\forall x,y \in \mathbb{R}$, then determine $g(x+f(y))$.
1996 China Team Selection Test, 2
Let $\alpha_1, \alpha_2, \dots, \alpha_n$, and $\beta_1, \beta_2, \ldots, \beta_n$, where $n \geq 4$, be 2 sets of real numbers such that
\[\sum_{i=1}^{n} \alpha_i^2 < 1 \qquad \text{and} \qquad \sum_{i=1}^{n} \beta_i^2 < 1.\]
Define
\begin{align*}
A^2 &= 1 - \sum_{i=1}^{n} \alpha_i^2,\\
B^2 &= 1 - \sum_{i=1}^{n} \beta_i^2,\\
W &= \frac{1}{2} (1 - \sum_{i=1}^{n} \alpha_i \beta_i)^2.
\end{align*}
Find all real numbers $\lambda$ such that the polynomial \[x^n + \lambda (x^{n-1} + \cdots + x^3 + Wx^2 + ABx + 1) = 0,\] only has real roots.
2015 Mathematical Talent Reward Programme, MCQ: P 9
How many $5 \times 5$ grids are possible such that each element is either 1 or 0 and each row sum and column sum is $4 ?$
[list=1]
[*] 64
[*] 32
[*] 120
[*] 96
[/list]
2010 Albania Team Selection Test, 2
Find all the continuous functions $f : \mathbb{R} \mapsto\mathbb{R}$ such that $\forall x,y \in \mathbb{R}$,
$(1+f(x)f(y))f(x+y)=f(x)+f(y)$.
ABMC Online Contests, 2020 Oct
[b]p1.[/b] Catherine's teacher thinks of a number and asks her to subtract $5$ and then multiply the result by $6$. Catherine accidentally switches the numbers by subtracting 6 and multiplying by $5$ to get $30$. If Catherine had not swapped the numbers, what would the correct answer be?
[b]p2.[/b] At Acton Boxborough Regional High School, desks are arranged in a rectangular grid-like configuration. In order to maintain proper social distancing, desks are required to be at least 6 feet away from all other desks. Assuming that the size of the desks is negligible, what is the maximum number of desks that can fit in a $25$ feet by $25$ feet classroom?
[b]p3.[/b] Joshua hates writing essays for homework, but his teacher Mr. Meesh assigns two essays every $3$ weeks. However, Mr. Meesh favors Joshua, so he allows Joshua to skip one essay out of every $4$ that are assigned. How many essays does Joshua have to write in a $24$-week school year?
[b]p4.[/b] Libra likes to read, but she is easily distracted. If a page number is even, she reads the page twice. If a page number is an odd multiple of three, she skips it. Otherwise, she reads the page exactly once. If Libra's book is $405$ pages long, how many pages in total does she read if she starts on page $1$? (Reading the same page twice counts as two pages.)
[b]p5.[/b] Let the GDP of an integer be its Greatest Divisor that is Prime. For example, the GDP of $14$ is $7$. Find the largest integer less than $100$ that has a GDP of $3$.
[b]p6.[/b] As has been proven by countless scientific papers, the Earth is a flat circle. Bob stands at a point on the Earth such that if he walks in a straight line, the maximum possible distance he can travel before he falls off is $7$ miles, and the minimum possible distance he can travel before he falls off is $3$ miles. Then the Earth's area in square miles is $k\pi$ for some integer $k$. Compute $k$.
[b]p7.[/b] Edward has $2$ magical eggs. Every minute, each magical egg that Edward has will double itself. But there's a catch. At the end of every minute, Edward's brother Eliot will come outside and smash one egg on his forehead, causing Edward to lose that egg permanently. For example, starting with $2$ eggs, after one minute there will be $3$ eggs, then $5$, $9$, and so on. After $1$ hour, the number of eggs can be expressed as $a^b + c$ for positive integers $a$, $b$, $c$ where $a > 1$, and $a$ and $c$ are as small as possible. Find $a + b + c$.
[b]p8.[/b] Define a sequence of real numbers $a_1$, $a_2$, $a_3$, $..$, $a_{2019}$, $a_{2020}$ with the property that $a_n =\frac{a_{n-1} + a_n + a_{n+1}}{3}$ for all $n = 2$, $3$, $4$, $5$,$...$, $2018$, $2019$. Given that $a_1 = 1$ and $a_{1000} = 1999$, find $a_{2020}$.
[b]p9.[/b] In $\vartriangle ABC$ with $AB = 10$ and $AC = 12$, points $D$ and $E$ lie on sides $\overline{AB}$ and $\overline{AC}$, respectively, such that $AD = 4$ and $AE = 5$. If the area of quadrilateral $BCED$ is $40$, find the area of $\vartriangle ADE$.
[b]p10.[/b] A positive integer is called powerful if every prime in its prime factorization is raised to a power greater than or equal to $2$. How many positive integers less than 100 are powerful?
[b]p11.[/b] Let integers $A,B < 10, 000$ be the populations of Acton and Boxborough, respectively. When $A$ is divided by $B$, the remainder is $1$. When $B$ is divided by $A$, the remainder is $2020$. If the sum of the digits of $A$ is $17$, find the total combined population of Acton and Boxborough.
[b]p12.[/b] Let $a_1$, $a_2$, $...$, $a_n$ be an increasing arithmetic sequence of positive integers. Given $a_n - a_1 = 20$ and $a^2_n - a^2_{n-1} = 63$, find the sum of the terms in the arithmetic sequence.
[b]p13.[/b] Bob rolls a cubical, an octahedral and a dodecahedral die ($6$, $8$ and $12$ sides respectively) numbered with the integers from $1$ to $6$, $1$ to $8$ and $1$ to $12$ respectively. If the probability that the sum of the numbers on the cubical and octahedral dice equals the number on the dodecahedral die can be written as $\frac{m}{n}$ , where $m, n$ are relatively prime positive integers, compute $n - m$.
[b]p14.[/b] Let $\vartriangle ABC$ be inscribed in a circle with center $O$ with $AB = 13$, $BC = 14$, $AC = 15$. Let the foot of the perpendicular from $A$ to BC be $D$ and let $AO$ intersect $BC$ at $E$. Given the length of $DE$ can be expressed as $\frac{m}{n}$ where $m$, $n$ are relatively prime positive integers, find $m + n$.
[b]p15.[/b] The set $S$ consists of the first $10$ positive integers. A collection of $10$ not necessarily distinct integers is chosen from $S$ at random. If a particular number is chosen more than once, all but one of its occurrences are removed. Call the set of remaining numbers $A$. Let $\frac{a}{b}$ be the expected value of the number of the elements in $A$, where $a, b$ are relatively prime positive integers. Find the reminder when $a + b$ is divided by $1000$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1995 IMO Shortlist, 1
Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc \equal{} 1$. Prove that
\[ \frac {1}{a^{3}\left(b \plus{} c\right)} \plus{} \frac {1}{b^{3}\left(c \plus{} a\right)} \plus{} \frac {1}{c^{3}\left(a \plus{} b\right)}\geq \frac {3}{2}.
\]
1993 Tournament Of Towns, (392) 4
Peter wants to make an unusual die having different positive integers on each of its faces. For neighbouring faces the corresponding numbers should differ by at least two. Find the minimal sum of the six numbers.
(Folklore)
2001 Korea Junior Math Olympiad, 2
$n$ is a product of some two consecutive primes. $s(n)$ denotes the sum of the divisors of $n$ and $p(n)$ denotes the number of relatively prime positive integers not exceeding $n$. Express $s(n)p(n)$ as a polynomial of $n$.
2013 ELMO Shortlist, 1
Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying
\begin{align*}
f(x+f(y)) &= g(x) + h(y) \\
g(x+g(y)) &= h(x) + f(y) \\
h(x+h(y)) &= f(x) + g(y)
\end{align*}
for all real numbers $x$ and $y$. (We say a function $F$ is [i]injective[/i] if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.)
[i]Proposed by Evan Chen[/i]
2019 Saudi Arabia JBMO TST, 2
Let $a, b, c$ be positive reals so that $a^2+b^2+c^2=1$. Find the minimum value of $S=1/a^2+1/b^2+1/c^2-2(a^3+b^3+c^3)/abc$
2022/2023 Tournament of Towns, P1
What is the largest possible rational root of the equation $ax^2 + bx + c = 0{}$ where $a, b$ and $c{}$ are positive integers that do not exceed $100{}$?
2019 Taiwan APMO Preliminary Test, P4
We define a sequence ${a_n}$:
$$a_1=1,a_{n+1}=\sqrt{a_n+n^2},n=1,2,...$$
(1)Find $\lfloor a_{2019}\rfloor$
(2)Find $\lfloor a_{1}^2\rfloor+\lfloor a_{2}^2\rfloor+...+\lfloor a_{20}^2\rfloor$