Found problems: 15925
2000 Belarus Team Selection Test, 8.3
Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that, for any two integers $x,y$ taken from two different subsets, the number $x^2-xy+y^2$ belongs to the third subset.
2018 BMT Spring, Tie 2
Suppose $2$ cars are going into a turn the shape of a half-circle. Car $ 1$ is traveling at $50$ meters per second and is hugging the inside of the turn, which has radius $200$ meters. Car $2$ is trying to pass Car $ 1$ going along the turn, but in order to do this, he has to move to the outside of the turn, which has radius $210$. Suppose that both cars come into the turn side by side, and that they also end the turn being side by side. What was the average speed of Car $2$, in meters per second, throughout the turn?
2007 Indonesia Juniors, day 1
p1. A set of cards contains $100$ cards, each of which is written with a number from $1$ up to $100$. On each of the two sides of the card the same number is written, side one is red and the other is green. First of all Leny arranges all the cards with red writing face up. Then Leny did the following three steps:
I. Turn over all cards whose numbers are divisible by $2$
II. Turn over all the cards whose numbers are divisible by $3$
III. Turning over all the cards whose numbers are divisible by $5$, but didn't turn over all cards whose numbers are divisible by $5$ and $2$.
Find the number of Leny cards now numbered in red and face up,
p2. Find the area of three intersecting semicircles as shown in the following image.
[img]https://cdn.artofproblemsolving.com/attachments/f/b/470c4d2b84435843975a0664fad5fee4a088d5.png[/img]
p3. It is known that $x+\frac{1}{x}=7$ . Determine the value of $A$ so that $\frac{Ax}{x^4+x^2+1}=\frac56$.
p4. There are $13$ different gifts that will all be distributed to Ami, Ima, Mai,and Mia. If Ami gets at least $4$ gifts, Ima and Mai respectively got at least $3$ gifts, and Mia got at least $2$ gifts, how many possible gift arrangements are there?
p5. A natural number is called a [i]quaprimal [/i] number if it satisfies all four following conditions:
i. Does not contain zeros.
ii. The digits compiling the number are different.
iii. The first number and the last number are prime numbers or squares of an integer.
iv. Each pair of consecutive numbers forms a prime number or square of an integer.
For example, we check the number $971643$.
(i) $971643$ does not contain zeros.
(ii) The digits who compile $971643$ are different.
(iii) One first number and one last number of $971643$, namely $9$ and $3$ is a prime number or a square of an integer.
(iv) Each pair of consecutive numbers, namely $97, 71, 16, 64$, and $43$ form prime number or square of an integer.
So $971643$ is a quadratic number.
Find the largest $6$-digit quaprimal number.
Find the smallest $6$-digit quaprimal number.
Which digit is never contained in any arbitrary quaprimal number? Explain.
2006 Alexandru Myller, 2
For a prime $ p\ge 5, $ determine the number of polynomials $ X^p+pX^k+pX^l+1 $ with $ 1<k<l<p, $ that are ireducible over the integers.
2009 Kosovo National Mathematical Olympiad, 1
Find the graph of the function $y=1-|1-sin x|$.
2023 Mexican Girls' Contest, 2
Matilda drew $12$ quadrilaterals. The first quadrilateral is an rectangle of integer sides and $7$ times more width than long. Every time she drew a quadrilateral she joined the midpoints of each pair of consecutive sides with a segment. It´s is known that the last quadrilateral Matilda drew was the first with area less than $1$. What is the maximum area possible for the first quadrilateral?
[asy]size(200);
pair A, B, C, D, M, N, P, Q;
real base = 7;
real altura = 1;
A = (0, 0);
B = (base, 0);
C = (base, altura);
D = (0, altura);
M = (0.5*base, 0*altura);
N = (0.5*base, 1*altura);
P = (base, 0.5*altura);
Q = (0, 0.5*altura);
draw(A--B--C--D--cycle); // Rectángulo
draw(M--P--N--Q--cycle); // Paralelogramo
dot(M);
dot(N);
dot(P);
dot(Q);
[/asy]
$\textbf{Note:}$ The above figure illustrates the first two quadrilaterals that Matilda drew.
1940 Moscow Mathematical Olympiad, 058
Solve the system $\begin{cases} (x^3 + y^3)(x^2 + y^2) = 2b^5 \\
x + y = b \end{cases}$ in $C$
2014 ITAMO, 5
Prove that there exists a positive integer that can be written, in at least two ways, as a sum of $2014$-th powers of $2015$ distinct positive integers $x_1 <x_2 <\cdots <x_{2015}$.
2018-IMOC, A1
Find all functions $f:\mathbb Q\to\mathbb Q$ such that for all $x,y,z,w\in\mathbb Q$,
$$f(f(xyzw)+x+y)+f(z)+f(w)=f(f(xyzw)+z+w)+f(x)+f(y).$$
2019 Poland - Second Round, 2
Determine all nonnegative integers $x, y$ satisfying the equation
\begin{align*}
\sqrt{xy}=\sqrt{x+y}+\sqrt{x}+\sqrt{y}.
\end{align*}
2004 Tournament Of Towns, 3
Each day, the price of the shares of the corporation “Soap Bubble, Limited” either increases or decreases by $n$ percent, where $n$ is an integer such that $0 < n < 100$. The price is calculated with unlimited precision. Does there exist an $n$ for which the price can take the same value twice?
2005 Pan African, 2
Let $S$ be a set of integers with the property that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. If $0$ and $1000$ are elements of $S$, prove that $-2$ is also an element of $S$.
2017 BmMT, Team Round
[b]p1.[/b] Suppose $a_1 \cdot 2 = a_2 \cdot 3 = a_3$ and $a_1 + a_2 + a_3 = 66$. What is $a_3$?
[b]p2.[/b] Ankit buys a see-through plastic cylindrical water bottle. However, in coming home, he accidentally hits the bottle against a wall and dents the top portion of the bottle (above the $7$ cm mark). Ankit now wants to determine the volume of the bottle. The area of the base of the bottle is $20$ cm$^2$ . He fills the bottle with water up to the $5$ cm mark. After flipping the bottle upside down, he notices that the height of the empty space is at the $7$ cm mark. Find the total volume (in cm$^3$) of this bottle.
[img]https://cdn.artofproblemsolving.com/attachments/1/9/f5735c77b056aaf31b337ea1b777a591807819.png[/img]
[b]p3.[/b] If $P$ is a quadratic polynomial with leading coefficient $ 1$ such that $P(1) = 1$, $P(2) = 2$, what is $P(10)$?
[b]p4.[/b] Let ABC be a triangle with $AB = 1$, $AC = 3$, and $BC = 3$. Let $D$ be a point on $BC$ such that $BD =\frac13$ . What is the ratio of the area of $BAD$ to the area of $CAD$?
[b]p5.[/b] A coin is flipped $ 12$ times. What is the probability that the total number of heads equals the total number of tails? Express your answer as a common fraction in lowest terms.
[b]p6.[/b] Moor pours $3$ ounces of ginger ale and $ 1$ ounce of lime juice in cup $A$, $3$ ounces of lime juice and $ 1$ ounce of ginger ale in cup $B$, and mixes each cup well. Then he pours $ 1$ ounce of cup $A$ into cup $B$, mixes it well, and pours $ 1$ ounce of cup $B$ into cup $A$. What proportion of cup $A$ is now ginger ale? Express your answer as a common fraction in lowest terms.
[b]p7.[/b] Determine the maximum possible area of a right triangle with hypotenuse $7$. Express your answer as a common fraction in lowest terms.
[b]p8.[/b] Debbie has six Pusheens: $2$ pink ones, $2$ gray ones, and $2$ blue ones, where Pusheens of the same color are indistinguishable. She sells two Pusheens each to Alice, Bob, and Eve. How many ways are there for her to do so?
[b]p9.[/b] How many nonnegative integer pairs $(a, b)$ are there that satisfy $ab = 90 - a - b$?
[b]p10.[/b] What is the smallest positive integer $a_1...a_n$ (where $a_1, ... , a_n$ are its digits) such that $9 \cdot a_1 ... a_n = a_n ... a_1$, where $a_1$, $a_n \ne 0$?
[b]p11.[/b] Justin is growing three types of Japanese vegetables: wasabi root, daikon and matsutake mushrooms. Wasabi root needs $2$ square meters of land and $4$ gallons of spring water to grow, matsutake mushrooms need $3$ square meters of land and $3$ gallons of spring water, and daikon need $ 1$ square meter of land and $ 1$ gallon of spring water to grow. Wasabi sell for $60$ per root, matsutake mushrooms sell for $60$ per mushroom, and daikon sell for $2$ per root. If Justin has $500$ gallons of spring water and $400$ square meters of land, what is the maximum amount of money, in dollars, he can make?
[b]p12.[/b] A [i]prim [/i] number is a number that is prime if its last digit is removed. A [i]rime [/i] number is a number that is prime if its first digit is removed. Determine how many numbers between $100$ and $999$ inclusive are both prim and rime numbers.
[b]p13.[/b] Consider a cube. Each corner is the intersection of three edges; slice off each of these corners through the midpoints of the edges, obtaining the shape below. If we start with a $2\times 2\times 2$ cube, what is the volume of the resulting solid?
[img]https://cdn.artofproblemsolving.com/attachments/4/8/856814bf99e6f28844514158344477f6435a3a.png[/img]
[b]p14.[/b] If a parallelogram with perimeter $14$ and area $ 12$ is inscribed in a circle, what is the radius of the circle?
[b]p15.[/b] Take a square $ABCD$ of side length $1$, and draw $\overline{AC}$. Point $E$ lies on $\overline{BC}$ such that $\overline{AE}$ bisects $\angle BAC$. What is the length of $BE$?
[b]p16.[/b] How many integer solutions does $f(x) = (x^2 + 1)(x^2 + 2) + (x^2 + 3)(x + 4) = 2017$ have?
[b]p17.[/b] Alice, Bob, Carol, and Dave stand in a circle. Simultaneously, each player selects another player at random and points at that person, who must then sit down. What is the probability that Alice is the only person who remains standing?
[b]p18.[/b] Let $x$ be a positive integer with a remainder of $2$ when divided by $3$, $3$ when divided by $4$, $4$ when divided by $5$, and $5$ when divided by $6$. What is the smallest possible such $x$?
[b]p19[/b]. A circle is inscribed in an isosceles trapezoid such that all four sides of the trapezoid are tangent to the circle. If the radius of the circle is $ 1$, and the upper base of the trapezoid is $ 1$, what is the area of the trapezoid?
[b]p20.[/b] Ray is blindfolded and standing $ 1$ step away from an ice cream stand. Every second, he has a $1/4$ probability of walking $ 1$ step towards the ice cream stand, and a $3/4$ probability of walking $ 1$ step away from the ice cream stand. When he is $0$ steps away from the ice cream stand, he wins. What is the probability that Ray eventually wins?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 IFYM, Sozopol, 1
Find all functions \( f: \mathbb{R}^{+} \to \mathbb{R}^{+} \) such that:
\[
f(x^2 + y) = xf(x) + \frac{f(y^2)}{y}
\]
for any positive real numbers \( x \) and \( y \).
2023 China Northern MO, 2
Let $ a,b,c \in (0,1) $ and $ab+bc+ca=4abc .$ Prove that $$\sqrt{a+b+c}\geq \sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}$$
2012 German National Olympiad, 4
Let $a,b$ be positive real numbers and $n\geq 2$ a positive integer. Prove that if $x^n \leq ax+b$ holds for a positive real number $x$, then it also satisfies the inequality $x < \sqrt[n-1]{2a} + \sqrt[n]{2b}.$
2023 Bulgaria National Olympiad, 3
Let $f(x)$ be a polynomial with positive integer coefficients. For every $n\in\mathbb{N}$, let $a_{1}^{(n)}, a_{2}^{(n)}, \dots , a_{n}^{(n)}$ be fixed positive integers that give pairwise different residues modulo $n$ and let
\[g(n) = \sum\limits_{i=1}^{n} f(a_{i}^{(n)}) = f(a_{1}^{(n)}) + f(a_{2}^{(n)}) + \dots + f(a_{n}^{(n)})\]
Prove that there exists a constant $M$ such that for all integers $m>M$ we have $\gcd(m, g(m))>2023^{2023}$.
2004 Estonia Team Selection Test, 1
Let $k > 1$ be a fixed natural number. Find all polynomials $P(x)$ satisfying the condition $P(x^k) = (P(x))^k$ for all real numbers $x$.
2018 Ukraine Team Selection Test, 8
A sequence of real numbers $a_1,a_2,\ldots$ satisfies the relation
$$a_n=-\max_{i+j=n}(a_i+a_j)\qquad\text{for all}\quad n>2017.$$
Prove that the sequence is bounded, i.e., there is a constant $M$ such that $|a_n|\leq M$ for all positive integers $n$.
2023 Junior Balkan Team Selection Tests - Romania, P3
Initially the numbers $i^3-i$ for $i=2,3 \ldots 2n+1$ are written on a blackboard, where $n\geq 2$ is a positive integer. On one move we can delete three numbers $a, b, c$ and write the number $\frac{abc} {ab+bc+ca}$. Prove that when two numbers remain on the blackboard, their sum will be greater than $16$.
2023 Puerto Rico Team Selection Test, 3
You have a list of $2023$ numbers, where each one can be $-1$, $0$, $1$ or $2$. The sum of all numbers is $19$ and the sum of their squares is $99$. What are the minimum and maximum values of the sum of the cubes of those $2023$ numbers?
2025 Euler Olympiad, Round 1, 7
Let $s(n)$ be the final value obtained after repeatedly summing the digits of $n$ until a single-digit number is reached. (For example: $s(187) = 7$, because the digit sum of $187$ is $16$ and the digit sum of $16$ is $7$). Evaluate the sum:
$$ s(1^2) + s(2^2) + s(3^2) + \ldots + s(2025^2)$$
[i]Proposed by Lia Chitishvili, Georgia [/i]
1982 All Soviet Union Mathematical Olympiad, 338
Cucumber river in the Flower city has parallel banks with the distance between them $1$ metre. It has some islands with the total perimeter $8$ metres. Mr. Know-All claims that it is possible to cross the river in a boat from the arbitrary point, and the trajectory will not exceed $3$ metres. Is he right?
2023 Purple Comet Problems, 1
Find the sum of the four least positive integers each of whose digits add to $12$.
2014 USA TSTST, 4
Let $P(x)$ and $Q(x)$ be arbitrary polynomials with real coefficients, and let $d$ be the degree of $P(x)$. Assume that $P(x)$ is not the zero polynomial. Prove that there exist polynomials $A(x)$ and $B(x)$ such that:
(i) both $A$ and $B$ have degree at most $d/2$
(ii) at most one of $A$ and $B$ is the zero polynomial.
(iii) $\frac{A(x)+Q(x)B(x)}{P(x)}$ is a polynomial with real coefficients. That is, there is some polynomial $C(x)$ with real coefficients such that $A(x)+Q(x)B(x)=P(x)C(x)$.