Found problems: 15925
2017 Iran MO (3rd round), 2
Let $P(z)=a_d z^d+\dots+ a_1z+a_0$ be a polynomial with complex coefficients. The $reverse$ of $P$ is defined by
$$P^*(z)=\overline{a_0}z^d+\overline{a_1}z^{d-1}+\dots+\overline{a_d}$$
(a) Prove that
$$P^*(z)=z^d \overline{ P\left( \frac{1}{\overline{z}} \right) } $$
(b) Let $m$ be a positive integer and let $q(z)$ be a monic nonconstant polynomial with complex coefficients. Suppose that all roots of $q(z)$ lie inside or on the unit circle. Prove that all roots of the polynomial
$$Q(z)=z^m q(z)+ q^*(z)$$
lie on the unit circle.
2019 Pan-African, 1
Let $(a_n)_{n=0}^{\infty}$ be a sequence of real numbers defined as follows:
[list]
[*] $a_0 = 3$, $a_1 = 2$, and $a_2 = 12$; and
[*] $2a_{n + 3} - a_{n + 2} - 8a_{n + 1} + 4a_n = 0$ for $n \geq 0$.
[/list]
Show that $a_n$ is always a strictly positive integer.
2010 Mathcenter Contest, 1
A function $ f: R^3\rightarrow R$ for all reals $ a,b,c,d,e$ satisfies a condition:
\[ f(a,b,c)\plus{}f(b,c,d)\plus{}f(c,d,e)\plus{}f(d,e,a)\plus{}f(e,a,b)\equal{}a\plus{}b\plus{}c\plus{}d\plus{}e\]
Show that for all reals $ x_1,x_2,\ldots,x_n$ ($ n\geq 5$) equality holds:
\[ f(x_1,x_2,x_3)\plus{}f(x_2,x_3,x_4)\plus{}\ldots \plus{}f(x_{n\minus{}1},x_n,x_1)\plus{}f(x_n,x_1,x_2)\equal{}x_1\plus{}x_2\plus{}\ldots\plus{}x_n\]
1966 IMO Shortlist, 31
Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?
1997 USAMO, 6
Suppose the sequence of nonnegative integers $a_1, a_2, \ldots, a_{1997}$ satisfies
\[ a_i + a_j \leq a_{i+j} \leq a_i + a_j + 1 \]
for all $i,j \geq 1$ with $i + j \leq 1997$. Show that there exists a real number $x$ such that $a_n = \lfloor nx \rfloor$ (the greatest integer $\leq nx$) for all $1 \leq n \leq 1997$.
1976 Vietnam National Olympiad, 6
Show that $\frac{1}{x_1^n} + \frac{1}{x_2^n} +...+ \frac{1}{x_k^n} \ge k^{n+1}$ for positive real numbers $x_i $ with sum $1$.
2022 Kyiv City MO Round 1, Problem 1
Does there exist a quadratic trinomial $ax^2 + bx + c$ such that $a, b, c$ are odd integers, and $\frac{1}{2022}$ is one of its roots?
2014 Taiwan TST Round 1, 1
Let $f(x) = x^n + a_{n-2} x^{n-2} + a_{n-3}x^{n-3} + \dots + a_1x + a_0$ be a polynomial with real coefficients $(n \ge 2)$. Suppose all roots of $f$ are real. Prove that the absolute value of each root is at most $\sqrt{\frac{2(1-n)}n a_{n-2}}$.
1994 Abels Math Contest (Norwegian MO), 3b
Prove that there is no function $f : Z \to Z$ such that $f(f(x)) = x+1$ for all $x$.
1966 Spain Mathematical Olympiad, 7
Determine a geometric progression of seven terms, knowing the sum, $7$, of the first three, and the sum, $112$, of the last three.
2004 Federal Competition For Advanced Students, P2, 5
Solve the following system of equations in real numbers: $\begin{cases} a^2 = \cfrac{\sqrt{bc}\sqrt[3]{bcd}}{(b+c)(b+c+d)} \\
b^2 =\cfrac{\sqrt{cd}\sqrt[3]{cda}}{(c+d)(c+d+a)} \\
c^2 =\cfrac{\sqrt{da}\sqrt[3]{dab}}{(d+a)(d+a+b)} \\
d^2 =\cfrac{\sqrt{ab}\sqrt[3]{abc}}{(a+b)(a+b+c)} \end{cases}$
2021 Durer Math Competition (First Round), 4
Find all pairs of polynomials $(p, q)$ with integer coefficients that satisfy the equation $$p(x^2) + q(x^2) = p(x)q(x)$$ such that $p$ is of degree $n$ and has $n$ nonnegative real roots (with multiplicity).
2025 Greece National Olympiad, 1
Let $P(x)=x^4+5x^3+mx^2+5nx+4$ have $2$ distinct real roots, which sum up to $-5$. If $m,n \in \mathbb {Z_+}$, find the values of $m,n$ and their corresponding roots.
1982 Bundeswettbewerb Mathematik, 1
Max divided a natural number $p$ by a natural number $q \leq 100$. In the decimal representation of the quotient he calculated, the sequence of digits $1982$ occurs somewhere after the decimal point. Show that Max made a computational mistake.
1990 Greece National Olympiad, 2
If $a+b=1$, $ \in \mathbb{R}$ and $ab \ne 0$, prove that $$\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2(ab-2)}{a^2b^2+3}$$
2004 Romania Team Selection Test, 7
Let $a,b,c$ be 3 integers, $b$ odd, and define the sequence $\{x_n\}_{n\geq 0}$ by $x_0=4$, $x_1=0$, $x_2=2c$, $x_3=3b$ and for all positive integers $n$ we have
\[ x_{n+3} = ax_{n-1}+bx_n + cx_{n+1} . \]
Prove that for all positive integers $m$, and for all primes $p$ the number $x_{p^m}$ is divisible by $p$.
2015 Mid-Michigan MO, 7-9
[b]p1.[/b] Thirty players participate in a chess tournament. Every player plays one game with every other player. What maximal number of players can get exactly $5$ points? (any game adds $1$ point to the winner’s score, $0$ points to a loser’s score, in the case of a draw each player obtains $1/2$ point.)
[b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's?
[b]p3.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square?
[b]p4.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from 1 to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number 3? The total number of all obtained points is $264$.
[b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023-IMOC, A3
Given positive reals $x,y,z$ satisfying $x+y+z=3$, prove that \[\sum_{cyc}\left( x^2+y^2+x^2y^2+\frac{y^2}{x^2}\right)\geq 4\sum_{cyc}\frac{y}{x}.\]
[i]Proposed by chengbilly.[/i]
2008 Mathcenter Contest, 8
Let $a,b,c,d \in R^+$ with $abcd=1$. Prove that $$\left(\frac{1+ab}{1+a}\right)^{2008}+\left(\frac{1+bc}{1+b}\right)^{2008}+\left(\frac{1+cd }{1+c}\right)^{2008}+\left(\frac{1+da}{1+d}\right)^{2008} \geq 4$$
[i](dektep)[/i]
ABMC Team Rounds, 2017
[u]Round 1[/u]
[b]1.1.[/b] A circle has a circumference of $20\pi$ inches. Find its area in terms of $\pi$.
[b]1.2.[/b] Let $x, y$ be the solution to the system of equations: $x^2 + y^2 = 10 \,\,\, , \,\,\, x = 3y$.
Find $x + y$ where both $x$ and $y$ are greater than zero.
[b]1. 3.[/b] Chris deposits $\$ 100$ in a bank account. He then spends $30\%$ of the money in the account on biology books. The next week, he earns some money and the amount of money he has in his account increases by $30 \%$. What percent of his original money does he now have?
[u]Round 2[/u]
[b]2.1.[/b] The bell rings every $45$ minutes. If the bell rings right before the first class and right after the last class, how many hours are there in a school day with $9$ bells?
[b]2.2.[/b] The middle school math team has $9$ members. They want to send $2$ teams to ABMC this year: one full team containing 6 members and one half team containing the other $3$ members. In how many ways can they choose a $6$ person team and a $3$ person team?
[b]2.3.[/b] Find the sum:
$$1 + (1 - 1)(1^2 + 1 + 1) + (2 - 1)(2^2 + 2 + 1) + (3 - 1)(3^2 + 3 + 1) + ...· + (8 - 1)(8^2 + 8 + 1) + (9 - 1)(9^2 + 9 + 1).$$
[u]Round 3[/u]
[b]3.1.[/b] In square $ABHI$, another square $BIEF$ is constructed with diagonal $BI$ (of $ABHI$) as its side. What is the ratio of the area of $BIEF$ to the area of $ABHI$?
[b]3.2.[/b] How many ordered pairs of positive integers $(a, b)$ are there such that $a$ and $b$ are both less than $5$, and the value of $ab + 1$ is prime? Recall that, for example, $(2, 3)$ and $(3, 2)$ are considered different ordered pairs.
[b]3.3.[/b] Kate Lin drops her right circular ice cream cone with a height of $ 12$ inches and a radius of $5$ inches onto the ground. The cone lands on its side (along the slant height). Determine the distance between the highest point on the cone to the ground.
[u]Round 4[/u]
[b]4.1.[/b] In a Museum of Fine Mathematics, four sculptures of Euler, Euclid, Fermat, and Allen, one for each statue, are nailed to the ground in a circle. Bob would like to fully paint each statue a single color such that no two adjacent statues are blue. If Bob only has only red and blue paint, in how many ways can he paint the four statues?
[b]4.2.[/b] Geo has two circles, one of radius 3 inches and the other of radius $18$ inches, whose centers are $25$ inches apart. Let $A$ be a point on the circle of radius 3 inches, and B be a point on the circle of radius $18$ inches. If segment $\overline{AB}$ is a tangent to both circles that does not intersect the line connecting their centers, find the length of $\overline{AB}$.
[b]4.3.[/b] Find the units digit to $2017^{2017!}$.
[u]Round 5[/u]
[b]5.1.[/b] Given equilateral triangle $\gamma_1$ with vertices $A, B, C$, construct square $ABDE$ such that it does not overlap with $\gamma_1$ (meaning one cannot find a point in common within both of the figures). Similarly, construct square $ACFG$ that does not overlap with $\gamma_1$ and square $CBHI$ that does not overlap with $\gamma_1$. Lines $DE$, $FG$, and $HI$ form an equilateral triangle $\gamma_2$. Find the ratio of the area of $\gamma_2$ to $\gamma_1$ as a fraction.
[b]5.2.[/b] A decimal that terminates, like $1/2 = 0.5$ has a repeating block of $0$. A number like $1/3 = 0.\overline{3}$ has a repeating block of length $ 1$ since the fraction bar is only over $ 1$ digit. Similarly, the numbers $0.0\overline{3}$ and $0.6\overline{5}$ have repeating blocks of length $ 1$. Find the number of positive integers $n$ less than $100$ such that $1/n$ has a repeating block of length $ 1$.
[b]5.3.[/b] For how many positive integers $n$ between $1$ and $2017$ is the fraction $\frac{n + 6}{2n + 6}$ irreducible? (Irreducibility implies that the greatest common factor of the numerator and the denominator is $1$.)
[u]Round 6[/u]
[b]6.1.[/b] Consider the binary representations of $2017$, $2017 \cdot 2$, $2017 \cdot 2^2$, $2017 \cdot 2^3$, $... $, $2017 \cdot 2^{100}$. If we take a random digit from any of these binary representations, what is the probability that this digit is a $1$ ?
[b]6.2.[/b] Aaron is throwing balls at Carlson’s face. These balls are infinitely small and hit Carlson’s face at only $1$ point. Carlson has a flat, circular face with a radius of $5$ inches. Carlson’s mouth is a circle of radius $ 1$ inch and is concentric with his face. The probability of a ball hitting any point on Carlson’s face is directly proportional to its distance from the center of Carlson’s face (so when you are $2$ times farther away from the center, the probability of hitting that point is $2$ times as large). If Aaron throws one ball, and it is guaranteed to hit Carlson’s face, what is the probability that it lands in Carlson’s mouth?
[b]6.3.[/b] The birth years of Atharva, his father, and his paternal grandfather form a geometric sequence. The birth years of Atharva’s sister, their mother, and their grandfather (the same grandfather) form an arithmetic sequence. If Atharva’s sister is $5$ years younger than Atharva and all $5$ people were born less than $200$ years ago (from $2017$), what is Atharva’s mother’s birth year?
[u]Round 7[/u]
[b]7. 1.[/b] A function $f$ is called an “involution” if $f(f(x)) = x$ for all $x$ in the domain of $f$ and the inverse of $f$ exists. Find the total number of involutions $f$ with domain of integers between $ 1$ and $ 8$ inclusive.
[b]7.2.[/b] The function $f(x) = x^3$ is an odd function since each point on $f(x)$ corresponds (through a reflection through the origin) to a point on $f(x)$. For example the point $(-2, -8)$ corresponds to $(2, 8)$. The function $g(x) = x^3 - 3x^2 + 6x - 10$ is a “semi-odd” function, since there is a point $(a, b)$ on the function such that each point on $g(x)$ corresponds to a point on $g(x)$ via a reflection over $(a, b)$. Find $(a, b)$.
[b]7.3.[/b] A permutations of the numbers $1, 2, 3, 4, 5$ is an arrangement of the numbers. For example, $12345$ is one arrangement, and $32541$ is another arrangement. Another way to look at permutations is to see each permutation as a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$. For example, the permutation $23154$ corresponds to the function f with $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, $f(5) = 4$, and $f(4) = 5$, where $f(x)$ is the $x$-th number of the permutation. But the permutation $23154$ has a cycle of length three since $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, and cycles after $3$ applications of $f$ when regarding a set of $3$ distinct numbers in the domain and range. Similarly the permutation $32541$ has a cycle of length three since $f(5) = 1$, $f(1) = 3$, and $f(3) = 5$. In a permutation of the natural numbers between $ 1$ and $2017$ inclusive, find the expected number of cycles
of length $3$.
[u]Round 8[/u]
[b]8.[/b] Find the number of characters in the problems on the accuracy round test. This does not include spaces and problem numbers (or the periods after problem numbers). For example, “$1$. What’s $5 + 10$?” would contain $11$ characters, namely “$W$,” “$h$,” “$a$,” “$t$,” “$’$,” “$s$,” “$5$,” “$+$,” “$1$,” “$0$,” “?”. If the correct answer is $c$ and your answer is $x$, then your score will be $$\max \left\{ 0, 13 -\left\lceil \frac{|x-c|}{100} \right\rceil \right\}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1969 IMO, 6
Given real numbers $x_1,x_2,y_1,y_2,z_1,z_2$ satisfying $x_1>0,x_2>0,x_1y_1>z_1^2$, and $x_2y_2>z_2^2$, prove that: \[ {8\over(x_1+x_2)(y_1+y_2)-(z_1+z_2)^2}\le{1\over x_1y_1-z_1^2}+{1\over x_2y_2-z_2^2}. \] Give necessary and sufficient conditions for equality.
1989 IMO Longlists, 96
Let $ f : \mathbb{N} \mapsto \mathbb{N}$ be such that
[b](i)[/b] $ f$ is strictly increasing;
[b](ii)[/b] $ f(mn) \equal{} f(m)f(n) \quad \forall m, n \in \mathbb{N};$ and
[b](iii)[/b] if $ m \neq n$ and $ m^n \equal{} n^m,$ then $ f(m) \equal{} n$ or $ f(n) \equal{} m.$
Determine $ f(30).$
2014 All-Russian Olympiad, 2
Given a function $f\colon \mathbb{R}\rightarrow \mathbb{R} $ with $f(x)^2\le f(y)$ for all $x,y\in\mathbb{R} $, $x>y$, prove that $f(x)\in [0,1] $ for all $x\in \mathbb{R}$.
2016 Spain Mathematical Olympiad, 1
Two real number sequences are guiven, one arithmetic $\left(a_n\right)_{n\in \mathbb {N}}$ and another geometric sequence $\left(g_n\right)_{n\in \mathbb {N}}$ none of them constant. Those sequences verifies $a_1=g_1\neq 0$, $a_2=g_2$ and $a_{10}=g_3$. Find with proof that, for every positive integer $p$, there is a positive integer $m$, such that $g_p=a_m$.
2013 Saudi Arabia IMO TST, 2
Given an integer $n \ge 2$, determine the number of ordered $n$-tuples of integers $(a_1, a_2,...,a_n)$ such that
(a) $a_1 + a_2 + .. + a_n \ge n^2$ and
(b) $a_1^2 + a_2^2 + ... + a_n^2 \le n^3 + 1$