This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Contests, 1

Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and \[\gcd(P(0), P(1), P(2), \ldots ) = 1.\] Show there are infinitely many $n$ such that \[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\]

1995 Tournament Of Towns, (452) 1

Let $a, b, c$ and $d$ be points of the segment $[0,1]$ of the real line (this means numbers $x$ such that $0 \le x \le 1$). Prove that there exists a point $x$ on this segment such that $$\frac{1}{|x-a|}+\frac{1}{|x-b|}+\frac{1}{|x-c|}+\frac{1}{|x-d|}< 40.$$ (LD Kurliandchik)

2023 Chile TST Ibero., 2

Tags: algebra
Consider a function \( n \mapsto f(n) \) that satisfies the following conditions: \( f(n) \) is an integer for each \( n \). \( f(0) = 1 \). \( f(n+1) > f(n) + f(n-1) + \cdots + f(0) \) for each \( n = 0, 1, 2, \dots \). Determine the smallest possible value of \( f(2023) \).

2004 Bosnia and Herzegovina Team Selection Test, 3

Let $a$, $b$ and $c$ be positive real numbers such that $abc=1$. Prove the inequality: $\frac{ab}{a^5+b^5+ab} +\frac{bc}{b^5+c^5+bc}+\frac{ac}{c^5+a^5+ac}\leq 1$

2007 IMO, 6

Let $ n$ be a positive integer. Consider \[ S \equal{} \left\{ (x,y,z) \mid x,y,z \in \{ 0, 1, \ldots, n\}, x \plus{} y \plus{} z > 0 \right \} \] as a set of $ (n \plus{} 1)^{3} \minus{} 1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains $ S$ but does not include $ (0,0,0)$. [i]Author: Gerhard Wöginger, Netherlands [/i]

2007 Iran MO (3rd Round), 1

Let $ a,b$ be two complex numbers. Prove that roots of $ z^{4}\plus{}az^{2}\plus{}b$ form a rhombus with origin as center, if and only if $ \frac{a^{2}}{b}$ is a non-positive real number.

2021 Kosovo National Mathematical Olympiad, 4

Let $P(x)$ be a polynomial with integer coefficients. We will denote the set of all prime numbers by $\mathbb P$. Show that the set $\mathbb S := \{p\in\mathbb P : \exists\text{ }n \text{ s.t. }p\mid P(n)\}$ is finite if and only if $P(x)$ is a non-zero constant polynomial.

LMT Team Rounds 2010-20, B29

Tags: algebra
Alicia bought some number of disposable masks, of which she uses one per day. After she uses each of her masks, she throws out half of them (rounding up if necessary) and reuses each of the remaining masks, repeating this process until she runs out of masks. If her masks lasted her $222$ days, how many masks did she start out with?

2023 Azerbaijan BMO TST, 3

Find all functions $f : \mathbb{R} \to\mathbb{R}$ such that $f(0)\neq 0$ and \[f(f(x)) + f(f(y)) = f(x + y)f(xy),\] for all $x, y \in\mathbb{R}$.

2023 Euler Olympiad, Round 1, 8

Tags: algebra
Let $a$, $b$, $c$, and $d$ be positive integers such that the following two inequalities hold: $a < 10^{20} \cdot c$ and $b > 10^{23} \cdot d$. Determine the minimum possible value of the total number of positive integer pairs $(n, m)$ for which $n \cdot m = 2^{2023}$ and $$ \frac {ab}{n} + \frac{cd}{m} < \frac{(a + c)(b + d)}{n + m}$$ [i]Proposed by Stijn Cambie, Belgium[/i]

2010 Contests, 1

Determine all strictly increasing functions $f: \mathbb{N}\to\mathbb{N}$ satisfying $nf(f(n))=f(n)^2$ for all positive integers $n$. [i]Carl Lian and Brian Hamrick.[/i]

2008 China Team Selection Test, 3

Let $ n>m>1$ be odd integers, let $ f(x)\equal{}x^n\plus{}x^m\plus{}x\plus{}1$. Prove that $ f(x)$ can't be expressed as the product of two polynomials having integer coefficients and positive degrees.

2008 Baltic Way, 1

Determine all polynomials $p(x)$ with real coefficients such that $p((x+1)^3)=(p(x)+1)^3$ and $p(0)=0$.

2018 LMT Fall, Individual

[b]p1.[/b] Find the area of a right triangle with legs of lengths $20$ and $18$. [b]p2.[/b] How many $4$-digit numbers (without leading zeros) contain only $2,0,1,8$ as digits? Digits can be used more than once. [b]p3.[/b] A rectangle has perimeter $24$. Compute the largest possible area of the rectangle. [b]p4.[/b] Find the smallest positive integer with $12$ positive factors, including one and itself. [b]p5.[/b] Sammy can buy $3$ pencils and $6$ shoes for $9$ dollars, and Ben can buy $4$ pencils and $4$ shoes for $10$ dollars at the same store. How much more money does a pencil cost than a shoe? [b]p6.[/b] What is the radius of the circle inscribed in a right triangle with legs of length $3$ and $4$? [b]p7.[/b] Find the angle between the minute and hour hands of a clock at $12 : 30$. [b]p8.[/b] Three distinct numbers are selected at random fromthe set $\{1,2,3, ... ,101\}$. Find the probability that $20$ and $18$ are two of those numbers. [b]p9.[/b] If it takes $6$ builders $4$ days to build $6$ houses, find the number of houses $8$ builders can build in $9$ days. [b]p10.[/b] A six sided die is rolled three times. Find the probability that each consecutive roll is less than the roll before it. [b]p11.[/b] Find the positive integer $n$ so that $\frac{8-6\sqrt{n}}{n}$ is the reciprocal of $\frac{80+6\sqrt{n}}{n}$. [b]p12.[/b] Find the number of all positive integers less than $511$ whose binary representations differ from that of $511$ in exactly two places. [b]p13.[/b] Find the largest number of diagonals that can be drawn within a regular $2018$-gon so that no two intersect. [b]p14.[/b] Let $a$ and $b$ be positive real numbers with $a > b $ such that $ab = a +b = 2018$. Find $\lfloor 1000a \rfloor$. Here $\lfloor x \rfloor$ is equal to the greatest integer less than or equal to $x$. [b]p15.[/b] Let $r_1$ and $r_2$ be the roots of $x^2 +4x +5 = 0$. Find $r^2_1+r^2_2$ . [b]p16.[/b] Let $\vartriangle ABC$ with $AB = 5$, $BC = 4$, $C A = 3$ be inscribed in a circle $\Omega$. Let the tangent to $\Omega$ at $A$ intersect $BC$ at $D$ and let the tangent to $\Omega$ at $B$ intersect $AC$ at $E$. Let $AB$ intersect $DE$ at $F$. Find the length $BF$. [b]p17.[/b] A standard $6$-sided die and a $4$-sided die numbered $1, 2, 3$, and $4$ are rolled and summed. What is the probability that the sum is $5$? [b]p18.[/b] Let $A$ and $B$ be the points $(2,0)$ and $(4,1)$ respectively. The point $P$ is on the line $y = 2x +1$ such that $AP +BP$ is minimized. Find the coordinates of $P$. [b]p19.[/b] Rectangle $ABCD$ has points $E$ and $F$ on sides $AB$ and $BC$, respectively. Given that $\frac{AE}{BE}=\frac{BF}{FC}= \frac12$, $\angle ADE = 30^o$, and $[DEF] = 25$, find the area of rectangle $ABCD$. [b]p20.[/b] Find the sum of the coefficients in the expansion of $(x^2 -x +1)^{2018}$. [b]p21.[/b] If $p,q$ and $r$ are primes with $pqr = 19(p+q+r)$, find $p +q +r$ . [b]p22.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B$ is acute and $AB < AC$. Let $D$ be the foot of altitude from $A$ to $BC$ and $F$ be the foot of altitude from $E$, the midpoint of $BC$, to $AB$. If $AD = 16$, $BD = 12$, $AF = 5$, find the value of $AC^2$. [b]p23.[/b] Let $a,b,c$ be positive real numbers such that (i) $c > a$ (ii) $10c = 7a +4b +2024$ (iii) $2024 = \frac{(a+c)^2}{a}+ \frac{(c+a)^2}{b}$. Find $a +b +c$. [b]p24.[/b] Let $f^1(x) = x^2 -2x +2$, and for $n > 1$ define $f^n(x) = f ( f^{n-1}(x))$. Find the greatest prime factor of $f^{2018}(2019)-1$. [b]p25.[/b] Let $I$ be the incenter of $\vartriangle ABC$ and $D$ be the intersection of line that passes through $I$ that is perpendicular to $AI$ and $BC$. If $AB = 60$, $C A =120$, and $CD = 100$, find the length of $BC$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 USAMTS Problems, 2

Find positive integers $a$, $b$, and $c$ such that \[\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{219+\sqrt{10080}+\sqrt{12600}+\sqrt{35280}}.\] Prove that your solution is correct. (Warning: numerical approximations of the values do not constitute a proof.)

2014 Germany Team Selection Test, 2

Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that \[ m^2 + f(n) \mid mf(m) +n \] for all positive integers $m$ and $n$.

2024 Moldova EGMO TST, 1

Let $P$ be the set of all parabolas with the equation of the form $$y=(a-1)x^2-2(a+2)x+a+1$$ where $a$ is a real parameter and $a\neq1$. Prove that there exists an unique point $M$ such that all parabolas in $P$ pass through $M$.

2017 HMNT, 4

Tags: algebra
[b]M[/b]ary has a sequence $m_2,m_3,m_4,...$ , such that for each $b \ge 2$, $m_b$ is the least positive integer m for which none of the base-$b$ logarithms $log_b(m),log_b(m+1),...,log_b(m+2017)$ are integers. Find the largest number in her sequence.

2019 JBMO Shortlist, A7

Tags: algebra
Show that for any positive real numbers $a, b, c$ such that $a + b + c = ab + bc + ca$, the following inequality holds $3 + \sqrt[3]{\frac{a^3+1}{2}}+\sqrt[3]{\frac{b^3+1}{2}}+\sqrt[3]{\frac{c^3+1}{2}}\leq 2(a+b+c)$ [i]Proposed by Dorlir Ahmeti, Albania[/i]

2009 Canadian Mathematical Olympiad Qualification Repechage, 5

Determine all positive integers $n$ for which $n(n + 9)$ is a perfect square.

2022 Caucasus Mathematical Olympiad, 8

Paul can write polynomial $(x+1)^n$, expand and simplify it, and after that change every coefficient by its reciprocal. For example if $n=3$ Paul gets $(x+1)^3=x^3+3x^2+3x+1$ and then $x^3+\frac13x^2+\frac13x+1$. Prove that Paul can choose $n$ for which the sum of Paul’s polynomial coefficients is less than $2.022$.

2011 Today's Calculation Of Integral, 696

Let $P(x),\ Q(x)$ be polynomials such that : \[\int_0^2 \{P(x)\}^2dx=14,\ \int_0^2 P(x)dx=4,\ \int_0^2 \{Q(x)\}^2dx=26,\ \int_0^2 Q(x)dx=2.\] Find the maximum and the minimum value of $\int_0^2 P(x)Q(x)dx$.

2015 South Africa National Olympiad, 2

Tags: algebra
Determine all pairs of real numbers $a$ and $x$ that satisfy the simultaneous equations $$5x^3 + ax^2 + 8 = 0$$ and $$5x^3 + 8x^2 + a = 0.$$

2000 Romania National Olympiad, 1

Let $ \left( x_n\right)_{n\ge 1} $ be a sequence having $ x_1=3 $ and defined as $ x_{n+1} =\left\lfloor \sqrt 2x_n\right\rfloor , $ for every natural number $ n. $ Find all values $ m $ for which the terms $ x_m,x_{m+1},x_{m+2} $ are in arithmetic progression, where $ \lfloor\rfloor $ denotes the integer part.

2005 Polish MO Finals, 1

Tags: algebra
Given real $c > -2$. Prove that for positive reals $x_1,...,x_n$satisfying:$\sum\limits_{i=1}^n \sqrt{x_i ^2+cx_ix_{i+1}+x_{i+1}^2}=\sqrt{c+2}\left( \sum\limits_{i=1}^n x_i \right)$ holds $c=2$ or $x_1=...=x_n$