Found problems: 15925
2010 Germany Team Selection Test, 3
Find all functions $f$ from the set of real numbers into the set of real numbers which satisfy for all $x$, $y$ the identity \[ f\left(xf(x+y)\right) = f\left(yf(x)\right) +x^2\]
[i]Proposed by Japan[/i]
2013 India Regional Mathematical Olympiad, 2
Let $f(x)=x^3+ax^2+bx+c$ and $g(x)=x^3+bx^2+cx+a$, where $a,b,c$ are integers with $c\not=0$. Suppose that the following conditions hold:
[list=a][*]$f(1)=0$,
[*]the roots of $g(x)=0$ are the squares of the roots of $f(x)=0$.[/list]
Find the value of $a^{2013}+b^{2013}+c^{2013}$.
2014 Balkan MO Shortlist, A7
$\boxed{A7}$Prove that for all $x,y,z>0$ with $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$ and $0\leq a,b,c<1$ the following inequality holds
\[\frac{x^2+y^2}{1-a^z}+\frac{y^2+z^2}{1-b^x}+\frac{z^2+x^2}{1-c^y}\geq \frac{6(x+y+z)}{1-abc}\]
2022 LMT Spring, 9
Let $r_1, r_2, ..., r_{2021}$ be the not necessarily real and not necessarily distinct roots of $x^{2022} + 2021x = 2022$. Let $S_i = r_i^{2021}+2022r_i$ for all $1 \le i \le 2021$. Find $\left|\sum^{2021}_{i=1} S_i \right| = |S_1 +S_2 +...+S_{2021}|$.
2019 Latvia Baltic Way TST, 16
Determine all tuples of positive integers $(x, y, z, t)$ such that:
$$ xyz = t!$$
$$ (x+1)(y+1)(z+1) = (t+1)!$$
holds simultaneously.
2012 ELMO Shortlist, 8
Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that $f(x)f(y)f(x+y) = f(xy)(f(x) + f(y))$ for all $x,y\in\mathbb{Q}$.
[i]Sammy Luo and Alex Zhu.[/i]
2008 AIME Problems, 13
Let
\[ p(x,y) \equal{} a_0 \plus{} a_1x \plus{} a_2y \plus{} a_3x^2 \plus{} a_4xy \plus{} a_5y^2 \plus{} a_6x^3 \plus{} a_7x^2y \plus{} a_8xy^2 \plus{} a_9y^3.
\]Suppose that
\begin{align*}p(0,0) &\equal{} p(1,0) \equal{} p( \minus{} 1,0) \equal{} p(0,1) \equal{} p(0, \minus{} 1) \\&\equal{} p(1,1) \equal{} p(1, \minus{} 1) \equal{} p(2,2) \equal{} 0.\end{align*}
There is a point $ \left(\tfrac {a}{c},\tfrac {b}{c}\right)$ for which $ p\left(\tfrac {a}{c},\tfrac {b}{c}\right) \equal{} 0$ for all such polynomials, where $ a$, $ b$, and $ c$ are positive integers, $ a$ and $ c$ are relatively prime, and $ c > 1$. Find $ a \plus{} b \plus{} c$.
1983 IMO Longlists, 33
Let $F(n)$ be the set of polynomials $P(x) = a_0+a_1x+\cdots+a_nx^n$, with $a_0, a_1, . . . , a_n \in \mathbb R$ and $0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}.$ Prove that if $f \in F(m)$ and $g \in F(n)$, then $fg \in F(m + n).$
2021 Polish Junior MO First Round, 3
The numbers $a, b, c$ satisfy the condition $| a - b | = 2 | b - c | = 3 | c - a |$. Prove that $a = b = c$.
2020 Australian Maths Olympiad, 1
Determine all pairs $(a,b)$ of non-negative integers such that
$$ \frac{a+b}{2}-\sqrt{ab}=1.$$
2006 Bulgaria Team Selection Test, 3
[b]Problem 6.[/b] Let $p>2$ be prime. Find the number of the subsets $B$ of the set $A=\{1,2,\ldots,p-1\}$ such that, the sum of the elements of $B$ is divisible by $p.$
[i] Ivan Landgev[/i]
2019 LIMIT Category B, Problem 11
$$\left\lfloor\left(1\cdot2+2\cdot2^2+\ldots+100\cdot2^{100}\right)\cdot9^{-901}\right\rfloor=?$$
2008 Chile National Olympiad, 6
It is known that the number $\pi$ is transcendental, that is, it is not a root of any polynomial with integer coefficients. Using this fact, prove that the same is true for the number $\pi + \sqrt2$.
2016 India PRMO, 12
Let $S = 1 + \frac{1}{\sqrt2}+ \frac{1}{\sqrt3}+\frac{1}{\sqrt4}+...+ \frac{1}{\sqrt{99}}+ \frac{1}{\sqrt{100}}$ . Find $[S]$.
You may use the fact that $\sqrt{n} < \frac12 (\sqrt{n} +\sqrt{n+1}) <\sqrt{n+1}$ for all integers $n \ge 1$.
2014 Saudi Arabia GMO TST, 2
Let $S = \{f(a, b) | a, b = 1,2,3, 4$ and $a \ne b\}$, and consider all nonzero polynomials $p(X,Y )$ with integer coefficients such that $p(a, b) = 0$ for every element $(a,b)$ in $S$.
(a) What is the minimal degree of such polynomial $p(X, Y )$ ?
(b) Determine all such polynomials $p(X, Y )$ with minimal degree.
2020 CMIMC Algebra & Number Theory, 9
Let $p = 10009$ be a prime number. Determine the number of ordered pairs of integers $(x,y)$ such that $1\le x,y \le p$ and $x^3-3xy+y^3+1$ is divisible by $p$.
2006 Princeton University Math Competition, 8
Evaluate the sum $$\sum_{n=1}^{\infty} \frac{1}{n^2(n+1)}$$
2018 Korea National Olympiad, 4
Find all real values of $K$ which satisfies the following.
Let there be a sequence of real numbers $\{a_n\}$ which satisfies the following for all positive integers $n$.
(i). $0 < a_n < n^K$.
(ii). $a_1 + a_2 + \cdots + a_n < \sqrt{n}$.
Then, there exists a positive integer $N$ such that for all integers $n>N$, $$a^{2018}_1 + a^{2018}_2 + \cdots +a^{2018}_n < \frac{n}{2018}$$
2023 USEMO, 2
Each point in the plane is labeled with a real number. Show that there exist two distinct points $P$ and $Q$ whose labels differ by less than the distance from $P$ to $Q$.
[i]Holden Mui[/i]
1983 IMO Longlists, 59
Solve the equation
\[\tan^2(2x) + 2 \tan(2x) \cdot \tan(3x) -1 = 0.\]
1977 Chisinau City MO, 135
Solve the equation:
$$x=1978 - \dfrac{1977}{1978 - \dfrac{1977}{\frac{...}{...\dfrac{1977}{1978 -\dfrac{1977}{x}}}}}{}$$
1995 Korea National Olympiad, Problem 2
find all functions from the nonegative integers into themselves, such that: $2f(m^2+n^2)=f^2(m)+f^2(n)$ and for $m\geq n$ $f(m^2)\geq f(n^2)$.
2024 Brazil Team Selection Test, 2
Let $\mathbb R_{>0}$ be the set of positive real numbers. Determine all functions $f \colon \mathbb R_{>0} \to \mathbb R_{>0}$ such that \[x \big(f(x) + f(y)\big) \geqslant \big(f(f(x)) + y\big) f(y)\] for every $x, y \in \mathbb R_{>0}$.
2018 CMIMC Algebra, 9
Suppose $a_0,a_1,\ldots, a_{2018}$ are integers such that \[(x^2-3x+1)^{1009} = \sum_{k=0}^{2018}a_kx^k\] for all real numbers $x$. Compute the remainder when $a_0^2 + a_1^2 + \cdots + a_{2018}^2$ is divided by $2017$.
2016 Peru MO (ONEM), 3
Find all functions $f\colon \mathbb{R}\to\mathbb{R}$ such that
\[f(x + y) + f(x + z) - f(x)f(y + z) \ge 1\]
for all $x,y,z \in \mathbb{R}$