This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1996 German National Olympiad, 2

Let $a$ and $b$ be positive real numbers smaller than $1$. Prove that the following two statements are equivalent: (i) $a+b = 1$, (ii) Whenever $x,y$ are positive real numbers such that $x < 1, y < 1, ax+by < 1$, the following inequlity holds: $$\frac{1}{1-ax-by} \le \frac{a}{1-x} + \frac{b}{1-y}$$

1988 All Soviet Union Mathematical Olympiad, 480

Find the minimum value of $\frac{xy}{z} + \frac{yz}{x} +\frac{ zx}{y}$ for positive reals $x, y, z$ with $x^2 + y^2 + z^2 = 1$.

1959 Putnam, A1

Let $n$ be a positive integer. Prove that $x^n -\frac{1}{x^{n}}$ is expressible as a polynomial in $x-\frac{1}{x}$ with real coefficients if and only if $n$ is odd.

2014 IFYM, Sozopol, 4

Prove that for $\forall$ $x,y,z\in \mathbb{R}^+$ the following inequality is true: $\frac{x}{y+z}+\frac{25y}{z+x}+\frac{4z}{x+y}>2$.

2010 Puerto Rico Team Selection Test, 3

Prove that the inequality $x^2+y^2+1\ge 2(xy-x+y)$ is satisfied by any $x$, $y$ real numbers. Indicate when the equality is satisfied.

2010 Saudi Arabia Pre-TST, 4.3

Let $a, b, c$ be positive real numbers such that $abc = 8$. Prove that $$\frac{a-2}{a+1}+\frac{b-2}{b+1}+\frac{c-2}{c+1} \le 0$$

2008 Postal Coaching, 2

Find all polynomials $P$ with integer coefficients such that wherever $a, b \in N$ and $a+b$ is a square we have $P(a) + P(b)$ is also a square.

2014 Contests, 1

Prove that for positive reals $a$,$b$,$c$ so that $a+b+c+abc=4$, \[\left (1+\dfrac{a}{b}+ca \right )\left (1+\dfrac{b}{c}+ab \right)\left (1+\dfrac{c}{a}+bc \right) \ge 27\] holds.

MathLinks Contest 4th, 4.1

Let $N_0$ be the set of all non-negative integers and let $f : N_0 \times N_0 \to [0, +\infty)$ be a function such that $f(a, b) = f(b, a)$ and $$f(a, b) = f(a + 1, b) + f(a, b + 1),$$ for all $a, b \in N_0$. Denote by $x_n = f(n, 0)$ for all $n \in N_0$. Prove that for all $n \in N_0$ the following inequality takes place $$2^n x_n \ge x_0.$$

2006 All-Russian Olympiad Regional Round, 10.4

Given $n > 1$ monic square trinomials $x^2 - a_1x + b_1$,$...$, $x^2-a_nx + b_n$, and all $2n$ numbers are $a_1$,$...$, $a_n$, $b_1$,$...$, $b_n$ are different. Can it happen that each of the numbers $a_1$,$...$, $a_n$, $b_1$,$...$, $b_n is the root of one of these trinomials?

Math Hour Olympiad, Grades 8-10, 2013

[u]Round 1 [/u] [b]p1.[/b] Pirate Jim had $8$ boxes with gun powder weighing $1, 2, 3, 4, 5, 6, 7$, and $8$ pounds (the weight is printed on top of every box). Pirate Bob hid a $1$-pound gold bar in one of these boxes. Pirate Jim has a balance scale that he can use, but he cannot open any of the boxes. Help him find the box with the gold bar using two weighings on the balance scale. [b]p2.[/b] James Bond will spend one day at Dr. Evil's mansion to try to determine the answers to two questions: a) Is Dr. Evil at home? b) Does Dr. Evil have an army of ninjas? The parlor in Dr. Evil's mansion has three windows. At noon, Mr. Bond will sneak into the parlor and use open or closed windows to signal his answers. When he enters the parlor, some windows may already be opened, and Mr. Bond will only have time to open or close one window (or leave them all as they are). Help Mr. Bond and Moneypenny design a code that will tell Moneypenny the answers to both questions when she drives by later that night and looks at the windows. Note that Moneypenny will not have any way to know which window Mr. Bond opened or closed. [b]p3.[/b] Suppose that you have a triangle in which all three side lengths and all three heights are integers. Prove that if these six lengths are all different, there cannot be four prime numbers among them. p4. Fred and George have designed the Amazing Maze, a $5\times 5$ grid of rooms, with Adorable Doors in each wall between rooms. If you pass through a door in one direction, you gain a gold coin. If you pass through the same door in the opposite direction, you lose a gold coin. The brothers designed the maze so that if you ever come back to the room in which you started, you will find that your money has not changed. Ron entered the northwest corner of the maze with no money. After walking through the maze for a while, he had $8$ shiny gold coins in his pocket, at which point he magically teleported himself out of the maze. Knowing this, can you determine whether you will gain or lose a coin when you leave the central room through the north door? [b]p5.[/b] Bill and Charlie are playing a game on an infinite strip of graph paper. On Bill’s turn, he marks two empty squares of his choice (not necessarily adjacent) with crosses. Charlie, on his turn, can erase any number of crosses, as long as they are all adjacent to each other. Bill wants to create a line of $2013$ crosses in a row. Can Charlie stop him? [u]Round 2 [/u] [b]p6.[/b] $1000$ non-zero numbers are written around a circle and every other number is underlined. It happens that each underlined number is equal to the sum of its two neighbors and that each non-underlined number is equal to the product of its two neighbors. What could the sum of all the numbers written on the circle be? [b]p7.[/b] A grasshopper is sitting at the edge of a circle of radius $3$ inches. He can hop exactly $4$ inches in any direction, as long as he stays within the circle. Which points inside the circle can the grasshopper reach if he can make as many jumps as he likes? [img]https://cdn.artofproblemsolving.com/attachments/1/d/39b34b2b4afe607c1232f4ce9dec040a34b0c8.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 IMO Shortlist, 6

Suppose that $f$ and $g$ are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations $f(g(n)) = f(n) + 1$ and $g(f(n)) = g(n) + 1$ hold for all positive integers. Prove that $f(n) = g(n)$ for all positive integer $n.$ [i]Proposed by Alex Schreiber, Germany[/i]

2019 Dutch IMO TST, 3

Find all functions $f : Z \to Z$ satisfying the following two conditions: (i) for all integers $x$ we have $f(f(x)) = x$, (ii) for all integers $x$ and y such that $x + y$ is odd, we have $f(x) + f(y) \ge x + y$.

2024 All-Russian Olympiad, 7

Tags: algebra
There are $8$ different quadratic trinomials written on the board, among them there are no two that add up to a zero polynomial. It turns out that if we choose any two trinomials $g_1(x), g_2(X)$ from the board, then the remaining $6$ trinomials can be denoted as $g_3(x),g_4(x),\dots,g_8(x)$ so that all four polynomials $g_1(x)+g_2(x),g_3(x)+g_4(x),g_5(x)+g_6(x)$ and $g_7(x)+g_8(x)$ have a common root. Do all trinomials on the board necessarily have a common root? [i]Proposed by S. Berlov[/i]

2013 Middle European Mathematical Olympiad, 1

Find all functions $ f : \mathbb{R} \rightarrow \mathbb{R} $ such that \[ f( xf(x) + 2y) = f(x^2)+f(y)+x+y-1 \] holds for all $ x, y \in \mathbb{R}$.

1985 Tournament Of Towns, (083) T4

Three grasshoppers are on a straight line. Every second one grasshopper jumps. It jumps across one (but not across two) of the other grasshoppers . Prove that after $1985$ seconds the grasshoppers cannot be in the initial position . (Leningrad Mathematical Olympiad 1985)

2013 Costa Rica - Final Round, 5

Determine the number of polynomials of degree $5$ with different coefficients in the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ such that they are divisible by $x^2-x + 1$. Justify your answer.

1949-56 Chisinau City MO, 20

Tags: algebra
From point $A$ to point $B$, the car drove at a speed of $50$ km / h, and from $B$ to $A$ , at a speed of $30$ km / h. What was the average vehicle speed?

2017 Junior Balkan Team Selection Tests - Romania, 4

Let $a, b, c, d$ be non-negative real numbers satisfying $a + b + c + d = 3$. Prove that $$\frac{a}{1 + 2b^3} + \frac{b}{1 + 2c^3} +\frac{c}{1 + 2d^3} +\frac{d}{1 + 2a^3} \ge \frac{a^2 + b^2 + c^2 + d^2}{3}$$ When does the equality hold?

1975 Chisinau City MO, 100

Solve the equation: $\sin ^3x+\sin ^32x+\sin ^33x=(\sin x + \sin 2x + \sin 3x)^3$.

2009 India National Olympiad, 3

Find all real numbers $ x$ such that: $ [x^2\plus{}2x]\equal{}{[x]}^2\plus{}2[x]$ (Here $ [x]$ denotes the largest integer not exceeding $ x$.)

2004 AIME Problems, 13

The polynomial \[P(x)=(1+x+x^2+\cdots+x^{17})^2-x^{17}\] has 34 complex roots of the form $z_k=r_k[\cos(2\pi a_k)+i\sin(2\pi a_k)], k=1, 2, 3,\ldots, 34$, with $0<a_1\le a_2\le a_3\le\cdots\le a_{34}<1$ and $r_k>0$. Given that $a_1+a_2+a_3+a_4+a_5=m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

2023 CMIMC Algebra/NT, 9

Let $n$ be a nonnegative integer less than $2023$ such that $2n^2 + 3n$ is a perfect square. What is the sum of all possible $n$? [i]Proposed by Giacomo Rizzo[/i]

1996 Taiwan National Olympiad, 6

Let $q_{0},q_{1},...$ be a sequence of integers such that a) for any $m>n$ we have $m-n\mid q_{m}-q_{n}$, and b) $|q_{n}|\leq n^{10}, \ \forall n\geq 0$. Prove there exists a polynomial $Q$ such that $q_{n}=Q(n), \ \forall n\geq 0$.

2022 Indonesia TST, A

Let $a$ and $b$ be two positive reals such that the following inequality \[ ax^3 + by^2 \geq xy - 1 \] is satisfied for any positive reals $x, y \geq 1$. Determine the smallest possible value of $a^2 + b$. [i]Proposed by Fajar Yuliawan[/i]