This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2013 BmMT, Ind. Round

[b]p1.[/b] Ten math students take a test, and the average score on the test is $28$. If five students had an average of $15$, what was the average of the other five students' scores? [b]p2.[/b] If $a\otimes b = a^2 + b^2 + 2ab$, find $(-5\otimes 7) \otimes 4$. [b]p3.[/b] Below is a $3 \times 4$ grid. Fill each square with either $1$, $2$ or $3$. No two squares that share an edge can have the same number. After filling the grid, what is the $4$-digit number formed by the bottom row? [img]https://cdn.artofproblemsolving.com/attachments/9/6/7ef25fc1220d1342be66abc9485c4667db11c3.png[/img] [b]p4.[/b] What is the angle in degrees between the hour hand and the minute hand when the time is $6:30$? [b]p5.[/b] In a small town, there are some cars, tricycles, and spaceships. (Cars have $4$ wheels, tricycles have $3$ wheels, and spaceships have $6$ wheels.) Among the vehicles, there are $24$ total wheels. There are more cars than tricycles and more tricycles than spaceships. How many cars are there in the town? [b]p6.[/b] You toss five coins one after another. What is the probability that you never get two consecutive heads or two consecutive tails? [b]p7.[/b] In the below diagram, $\angle ABC$ and $\angle BCD$ are right angles. If $\overline{AB} = 9$, $\overline{BD} = 13$, and $\overline{CD} = 5$, calculate $\overline{AC}$. [img]https://cdn.artofproblemsolving.com/attachments/7/c/8869144e3ea528116e2d93e14a7896e5c62229.png[/img] [b]p8.[/b] Out of $100$ customers at a market, $80$ purchased oranges, $60$ purchased apples, and $70$ purchased bananas. What is the least possible number of customers who bought all three items? [b]p9.[/b] Francis, Ted and Fred planned to eat cookies after dinner. But one of them sneaked o earlier and ate the cookies all by himself. The three say the following: Francis: Fred ate the cookies. Fred: Ted did not eat the cookies. Ted: Francis is lying. If exactly one of them is telling the truth, who ate all the cookies? [b]p11.[/b] Let $ABC$ be a triangle with a right angle at $A$. Suppose $\overline{AB} = 6$ and $\overline{AC} = 8$. If $AD$ is the perpendicular from $A$ to $BC$, what is the length of $AD$? [b]p12.[/b] How many three digit even numbers are there with an even number of even digits? [b]p13.[/b] Three boys, Bob, Charles and Derek, and three girls, Alice, Elizabeth and Felicia are all standing in one line. Bob and Derek are each adjacent to precisely one girl, while Felicia is next to two boys. If Alice stands before Charles, who stands before Elizabeth, determine the number of possible ways they can stand in a line. [b]p14.[/b] A man $5$ foot, $10$ inches tall casts a $14$ foot shadow. $20$ feet behind the man, a flagpole casts ashadow that has a $9$ foot overlap with the man's shadow. How tall (in inches) is the flagpole? [b]p15.[/b] Alvin has a large bag of balls. He starts throwing away balls as follows: At each step, if he has $n$ balls and 3 divides $n$, then he throws away a third of the balls. If $3$ does not divide $n$ but $2$ divides $n$, then he throws away half of them. If neither $3$ nor $2$ divides $n$, he stops throwing away the balls. If he began with $1458$ balls, after how many steps does he stop throwing away balls? [b]p16.[/b] Oski has $50$ coins that total to a value of $82$ cents. You randomly steal one coin and find out that you took a quarter. As to not enrage Oski, you quickly put the coin back into the collection. However, you are both bored and curious and decide to randomly take another coin. What is the probability that this next coin is a penny? (Every coin is either a penny, nickel, dime or quarter). [b]p17.[/b] Let $ABC$ be a triangle. Let $M$ be the midpoint of $BC$. Suppose $\overline{MA} = \overline{MB} = \overline{MC} = 2$ and $\angle ACB = 30^o$. Find the area of the triangle. [b]p18.[/b] A spirited integer is a positive number representable in the form $20^n + 13k$ for some positive integer $n$ and any integer $k$. Determine how many spirited integers are less than $2013$. [b]p19. [/b]Circles of radii $20$ and $13$ are externally tangent at $T$. The common external tangent touches the circles at $A$, and $B$, respectively where $A \ne B$. The common internal tangent of the circles at $T$ intersects segment $AB$ at $X$. Find the length of $AX$. [b]p20.[/b] A finite set of distinct, nonnegative integers $\{a_1, ... , a_k\}$ is called admissible if the integer function $f(n) = (n + a_1) ... (n + a_k)$ has no common divisor over all terms; that is, $gcd \left(f(1), f(2),... f(n)\right) = 1$ for any integer$ n$. How many admissible sets only have members of value less than $10$? $\{4\}$ and $\{0, 2, 6\}$ are such sets, but $\{4, 9\}$ and $\{1, 3, 5\}$ are not. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 Harvard-MIT Mathematics Tournament, 10

The polynomial $f(x)=x^{2007}+17x^{2006}+1$ has distinct zeroes $r_1,\ldots,r_{2007}$. A polynomial $P$ of degree $2007$ has the property that $P\left(r_j+\dfrac{1}{r_j}\right)=0$ for $j=1,\ldots,2007$. Determine the value of $P(1)/P(-1)$.

2010 CHMMC Fall, Mixer

[i]In this round, problems will depend on the answers to other problems. A bolded letter is used to denote a quantity whose value is determined by another problem's answer.[/i] [u]Part I[/u] [b]p1.[/b] Let F be the answer to problem number $6$. You want to tile a nondegenerate square with side length $F$ with $1\times 2$ rectangles and $1 \times 1$ squares. The rectangles can be oriented in either direction. How many ways can you do this? [b]p2.[/b] Let [b]A[/b] be the answer to problem number $1$. Triangle $ABC$ has a right angle at $B$ and the length of $AC$ is [b]A[/b]. Let $D$ be the midpoint of $AB$, and let $P$ be a point inside triangle $ABC$ such that $PA = PC = \frac{7\sqrt5}{4}$ and $PD = \frac74$ . The length of $AB^2$ is expressible as $m/n$ for $m, n$ relatively prime positive integers. Find $m$. [b]p3.[/b] Let [b]B[/b] be the answer to problem number $2$. Let $S$ be the set of positive integers less than or equal to [b]B[/b]. What is the maximum size of a subset of $S$ whose elements are pairwise relatively prime? [b]p4.[/b] Let [b]C[/b] be the answer to problem number $3$. You have $9$ shirts and $9$ pairs of pants. Each is either red or blue, you have more red shirts than blue shirts, and you have same number of red shirts as blue pants. Given that you have [b]C[/b] ways of wearing a shirt and pants whose colors match, find out how many red shirts you own. [b]p5.[/b] Let [b]D[/b] be the answer to problem number $4$. You have two odd positive integers $a, b$. It turns out that $lcm(a, b) + a = gcd(a, b) + b =$ [b]D[/b]. Find $ab$. [b]p6.[/b] Let [b]E[/b] be the answer to problem number $5$. A function $f$ defined on integers satisfies $f(y)+f(12-y) = 10$ and $f(y) + f(8 - y) = 4$ for all integers $y$. Given that $f($ [b]E[/b] $) = 0$, compute $f(4)$. [u]Part II[/u] [b]p7.[/b] Let [b]L[/b] be the answer to problem number $12$. You want to tile a nondegenerate square with side length [b]L[/b] with $1\times 2$ rectangles and $7\times 7$ squares. The rectangles can be oriented in either direction. How many ways can you do this? [b]p8.[/b] Let [b]G[/b] be the answer to problem number $7$. Triangle $ABC$ has a right angle at $B$ and the length of $AC$ is [b]G[/b]. Let $D$ be the midpoint of $AB$, and let $P$ be a point inside triangle $ABC$ such that $PA = PC = \frac12$ and $PD = \frac{1}{2010}$ . The length of $AB^2$ is expressible as $m/n$ for $m, n$ relatively prime positive integers. Find $m$. [b]p9.[/b] Let [b]H[/b] be the answer to problem number $8$. Let $S$ be the set of positive integers less than or equal to [b]H[/b]. What is the maximum size of a subset of $S$ whose elements are pairwise relatively prime? [b]p10.[/b] Let [b]I[/b] be the answer to problem number $9$. You have $391$ shirts and $391$ pairs of pants. Each is either red or blue, you have more red shirts than blue shirts, and you have same number of red shirts as red pants. Given that you have [b]I[/b] ways of wearing a shirt and pants whose colors match, find out how many red shirts you own. [b]p11.[/b] Let [b]J[/b] be the answer to problem number $10$. You have two odd positive integers $a, b$. It turns out that $lcm(a, b) + 2a = 2 gcd(a, b) + b = $ [b]J[/b]. Find $ab$. [b]p12.[/b] Let [b]K[/b] be the answer to problem number $11$. A function $f$ defined on integers satisfies $f(y)+f(7-y) = 8$ and $f(y) + f(5 - y) = 4$ for all integers $y$. Given that $f($ [b]K[/b] $) = 453$, compute $f(2)$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1968 IMO, 3

Let $a,b,c$ be real numbers with $a$ non-zero. It is known that the real numbers $x_1,x_2,\ldots,x_n$ satisfy the $n$ equations: \[ ax_1^2+bx_1+c = x_{2} \]\[ ax_2^2+bx_2 +c = x_3\]\[ \ldots \quad \ldots \quad \ldots \quad \ldots\]\[ ax_n^2+bx_n+c = x_1 \] Prove that the system has [b]zero[/b], [u]one[/u] or [i]more than one[/i] real solutions if $(b-1)^2-4ac$ is [b]negative[/b], equal to [u]zero[/u] or [i]positive[/i] respectively.

2008 Balkan MO Shortlist, N2

Let $ c$ be a positive integer. The sequence $ a_1,a_2,\ldots$ is defined as follows $ a_1\equal{}c$, $ a_{n\plus{}1}\equal{}a_n^2\plus{}a_n\plus{}c^3$ for all positive integers $ n$. Find all $ c$ so that there are integers $ k\ge1$ and $ m\ge2$ so that $ a_k^2\plus{}c^3$ is the $ m$th power of some integer.

2024 AMC 12/AHSME, 15

The roots of $x^3 + 2x^2 - x + 3$ are $p, q,$ and $r.$ What is the value of \[(p^2 + 4)(q^2 + 4)(r^2 + 4)?\] $\textbf{(A) } 64 \qquad \textbf{(B) } 75 \qquad \textbf{(C) } 100 \qquad \textbf{(D) } 125 \qquad \textbf{(E) } 144$

2015 Belarus Team Selection Test, 2

Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] [i]Proposed by Denmark[/i]

2018 All-Russian Olympiad, 5

Tags: algebra
In a $10\times 10$ table, positive numbers are written. It is known that, looking left-right, the numbers in each row form an arithmetic progression and, looking up-down, the numbers is each column form a geometric progression. Prove that all the ratios of the geometric progressions are equal.

2022 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] Nineteen witches, all of different heights, stand in a circle around a campfire. Each witch says whether she is taller than both of her neighbors, shorter than both, or in-between. Exactly three said “I am taller.” How many said “I am in-between”? [b]p2.[/b] Alex is writing a sequence of $A$’s and $B$’s on a chalkboard. Any $20$ consecutive letters must have an equal number of $A$’s and $B$’s, but any 22 consecutive letters must have a different number of $A$’s and $B$’s. What is the length of the longest sequence Alex can write?. [b]p3.[/b] A police officer patrols a town whose map is shown. The officer must walk down every street segment at least once and return to the starting point, only changing direction at intersections and corners. It takes the officer one minute to walk each segment. What is the fastest the officer can complete a patrol? [img]https://cdn.artofproblemsolving.com/attachments/a/3/78814b37318adb116466ede7066b0d99d6c64d.png[/img] [b]p4.[/b] A zebra is a new chess piece that jumps in the shape of an “L” to a location three squares away in one direction and two squares away in a perpendicular direction. The picture shows all the moves a zebra can make from its given position. Is it possible for a zebra to make a sequence of $64$ moves on an $8\times 8$ chessboard so that it visits each square exactly once and returns to its starting position? [img]https://cdn.artofproblemsolving.com/attachments/2/d/01a8af0214a2400b279816fc5f6c039320e816.png[/img] [b]p5.[/b] Ann places the integers $1, 2,..., 100$ in a $10 \times 10$ grid, however she wants. In each round, Bob picks a row or column, and Ann sorts it from lowest to highest (left-to-right for rows; top-to-bottom for columns). However, Bob never sees the grid and gets no information from Ann. After eleven rounds, Bob must name a single cell that is guaranteed to contain a number that is at least $30$ and no more than $71$. Can he find a strategy to do this, no matter how Ann originally arranged the numbers? [u]Round 2[/u] [b]p6.[/b] Evelyn and Odette are playing a game with a deck of $101$ cards numbered $1$ through $101$. At the start of the game the deck is split, with Evelyn taking all the even cards and Odette taking all the odd cards. Each shuffles her cards. On every move, each player takes the top card from her deck and places it on a table. The player whose number is higher takes both cards from the table and adds them to the bottom of her deck, first the opponent’s card, then her own. The first player to run out of cards loses. Card $101$ was played against card $2$ on the $10$th move. Prove that this game will never end. [img]https://cdn.artofproblemsolving.com/attachments/8/1/aa16fe1fb4a30d5b9e89ac53bdae0d1bdf20b0.png[/img] [b]p7.[/b] The Vogon spaceship Tempest is descending on planet Earth. It will land on five adjacent buildings within a $10 \times 10$ grid, crushing any teacups on roofs of buildings within a $5 \times 1$ length of blocks (vertically or horizontally). As Commander of the Space Force, you can place any number of teacups on rooftops in advance. When the ship lands, you will hear how many teacups the spaceship breaks, but not where they were. (In the figure, you would hear $4$ cups break.) What is the smallest number of teacups you need to place to ensure you can identify at least one building the spaceship landed on? [img]https://cdn.artofproblemsolving.com/attachments/8/7/2a48592b371bba282303e60b4ff38f42de3551.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Tuymaada Olympiad, 1

Does the system of equation \begin{align*} \begin{cases} x_1 + x_2 &= y_1 + y_2 + y_3 + y_4 \\ x_1^2 + x_2^2 &= y_1^2 + y_2^2 + y_3^2 + y_4^2 \\ x_1^3 + x_2^3 &= y_1^3 + y_2^3 + y_3^3 + y_4^3 \end{cases} \end{align*} admit a solution in integers such that the absolute value of each of these integers is greater than $2020$?

2019 Estonia Team Selection Test, 10

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2009 Ukraine National Mathematical Olympiad, 1

Build the set of points $( x, y )$ on coordinate plane, that satisfies equality: \[ \sqrt{1-x^2}+\sqrt{1-y^2}=2-x^2-y^2.\]

2006 IMO Shortlist, 3

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2008 Bosnia And Herzegovina - Regional Olympiad, 2

If $ a$, $ b$ and $ c$ are positive reals prove inequality: \[ \left(1\plus{}\frac{4a}{b\plus{}c}\right)\left(1\plus{}\frac{4b}{a\plus{}c}\right)\left(1\plus{}\frac{4c}{a\plus{}b}\right) > 25.\]

2000 Regional Competition For Advanced Students, 1

For which natural numbers $n$ does $2^n > 10n^2 -60n + 80$ hold?

2012 District Olympiad, 1

Let $a_1, a_2, ... , a_{2012}$ be odd positive integers. Prove that the number $$A=\sqrt{a^2_1+ a^2_2+ ...+ a^2_{2012}-1}$$ is irrational.

LMT Team Rounds 2021+, 10

Tags: algebra
The sequence $a_0,a_1,a_2,...$ is defined such that $a_0 = 2+ \sqrt3$, $a_1 =\sqrt{5-2\sqrt5}$, and $$a_n a_{n-1}a_{n-2} - a_n + a_{n-1} + a_{n-2} = 0.$$ Find the least positive integer $n$ such that $a_n = 1$.

2021 International Zhautykov Olympiad, 6

Let $P(x)$ be a nonconstant polynomial of degree $n$ with rational coefficients which can not be presented as a product of two nonconstant polynomials with rational coefficients. Prove that the number of polynomials $Q(x)$ of degree less than $n$ with rational coefficients such that $P(x)$ divides $P(Q(x))$ a) is finite b) does not exceed $n$.

2011 Saudi Arabia Pre-TST, 4.3

Let $n \ge 2$ be a positive integer and let $x_n$ be a positive real root to the equation $x(x+1)...(x + n) = 1$. Prove that $$x_n <\frac{1}{\sqrt{n! H_n}}$$ where $H_n = 1+\frac12+...+\frac{1}{n}$.

2019 All-Russian Olympiad, 1

Each point $A$ in the plane is assigned a real number $f(A).$ It is known that $f(M)=f(A)+f(B)+f(C),$ whenever $M$ is the centroid of $\triangle ABC.$ Prove that $f(A)=0$ for all points $A.$

2011 Saudi Arabia Pre-TST, 2.2

Prove that for any positive real numbers $a, b, c$, $$2(a^3 + b^3 + c^3 + abc) \ge (a+b)(b + c)(c + a)$$.

1987 Poland - Second Round, 4

Determine all pairs of real numbers $ a, b $ for which the polynomials $ x^4 + 2ax^2 + 4bx + a^2 $ and $ x^3 + ax - b $ have two different common real roots.

2021 Junior Balkаn Mathematical Olympiad, 1

Tags: algebra
Let $n$ ($n \ge 1$) be an integer. Consider the equation $2\cdot \lfloor{\frac{1}{2x}}\rfloor - n + 1 = (n + 1)(1 - nx)$, where $x$ is the unknown real variable. (a) Solve the equation for $n = 8$. (b) Prove that there exists an integer $n$ for which the equation has at least $2021$ solutions. (For any real number $y$ by $\lfloor{y} \rfloor$ we denote the largest integer $m$ such that $m \le y$.)

1976 Czech and Slovak Olympiad III A, 2

Show that for any real $x\in[0,1]$ the inequality \[\frac{(1-x)x^2}{(1+x)^3}<\frac{1}{25}\] holds.

2015 Estonia Team Selection Test, 1

Let $n$ be a natural number, $n \ge 5$, and $a_1, a_2, . . . , a_n$ real numbers such that all possible sums $a_i + a_j$, where $1 \le i < j \le n$, form $\frac{n(n-1)}{2}$ consecutive members of an arithmetic progression when taken in some order. Prove that $a_1 = a_2 = . . . = a_n$.