This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2012 Romania National Olympiad, 1

Determine the real numbers $a, b, c, d$ so that $$ab + c + d = 3, \,\, bc + d + a = 5, \,\, cd + a + b = 2 \,\,\,\, and \,\,\,\,da + b + c = 6$$

2017 Bosnia And Herzegovina - Regional Olympiad, 1

Let $a$, $b$ and $c$ be real numbers such that $abc(a+b)(b+c)(c+a)\neq0$ and $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1007}{1008}$ Prove that $\frac{ab}{(a+c)(b+c)}+\frac{bc}{(b+a)(c+a)}+\frac{ca}{(c+b)(a+b)}=2017$

2007 Moldova National Olympiad, 12.2

Tags: algebra , geometry
For $p\in (0;\infty)$ find the area of the region bounded by the curves $y^{2}=4px$ and $16py^{2}=5(x-p)^{3}$

1981 All Soviet Union Mathematical Olympiad, 325

a) Find the minimal value of the polynomial $$P(x,y) = 4 + x^2y^4 + x^4y^2 - 3x^2y^2$$ b) Prove that it cannot be represented as a sum of the squares of some polynomials of $x,y$.

2005 Cuba MO, 2

Determine the quadratic functions $f(x) = ax^2 + bx + c$ for which there exists an interval $(h, k)$ such that for all $x \in (h, k)$ it holds that $f(x)f(x + 1) < 0$ and $f(x)f(x -1) < 0$.

2015 District Olympiad, 3

Solve in $ \mathbb{C} $ the following equation: $ |z|+|z-5i|=|z-2i|+|z-3i|. $

2001 Moldova National Olympiad, Problem 6

Set $a_n=\frac{2n}{n^4+3n^2+4},n\in\mathbb N$. Prove that $\frac14\le a_1+a_2+\ldots+a_n\le\frac12$ for all $n$.

2010 China Northern MO, 1

It is known that the sequence $\{a_n\}$ satisfies $a_1=2$, $a_n=2^{2n}a_{n-1}+n\cdot 2^{n^2}$, $(n \ge 2)$, find the general term of $a_n$.

IV Soros Olympiad 1997 - 98 (Russia), 10.3

For any two points $A (x_1 , y_1)$ and $B (x_2, y_2)$, the distance $r (A, B)$ between them is determined by the equality $r(A, B) = max\{| x_1- x_2 | , | y_1 - y_2 |\}$. Prove that the triangle inequality $r(A, C) + r(C, B) \ge r(A, B)$. holds for the distance introduced in this way . Let $A$ and $B$ be two points of the plane . Find the locus of points $C$ for which a) $r(A, C) + r(C, B) = r(A, B)$ b) $r(A, C) = r(C, B).$

2015 Benelux, 1

Tags: algebra
Determine the smallest positive integer $q$ with the following property: for every integer $m$ with $1\leqslant m\leqslant 1006$, there exists an integer $n$ such that $$\dfrac{m}{1007}q<n<\dfrac{m+1}{1008}q$$.

1993 Tournament Of Towns, (364) 3

Tags: algebra , operation
An operation denoted by $*$ defines, for each pair of numbers $(x, y)$, a number $x*y$ so that for all $x, y$ and $z$ the identities $$x*x = 0 \,\,\,\,\, (1)$$ and $$x*(*z) = (x* y)+ z \,\,\,\,\, (2)$$ hold ($+$ denoting ordinary addition of numbers). Find $1993* 1932$. (G Galperin)

2008 China Team Selection Test, 2

Prove that for all $ n\geq 2,$ there exists $ n$-degree polynomial $ f(x) \equal{} x^n \plus{} a_{1}x^{n \minus{} 1} \plus{} \cdots \plus{} a_{n}$ such that (1) $ a_{1},a_{2},\cdots, a_{n}$ all are unequal to $ 0$; (2) $ f(x)$ can't be factorized into the product of two polynomials having integer coefficients and positive degrees; (3) for any integers $ x, |f(x)|$ isn't prime numbers.

2007 Harvard-MIT Mathematics Tournament, 8

Suppose that $\omega$ is a primitive $2007^{\text{th}}$ root of unity. Find $\left(2^{2007}-1\right)\displaystyle\sum_{j=1}^{2006}\dfrac{1}{2-\omega^j}$.

2012 Middle European Mathematical Olympiad, 2

Let $ a,b$ and $ c $ be positive real numbers with $ abc = 1 $. Prove that \[ \sqrt{ 9 + 16a^2}+\sqrt{ 9 + 16b^2}+\sqrt{ 9 + 16c^2} \ge 3 +4(a+b+c)\]

2001 Italy TST, 2

Let $0\le a\le b\le c$ be real numbers. Prove that \[(a+3b)(b+4c)(c+2a)\ge 60abc \]

2022 LMT Spring, 2

Tags: algebra
Let $a \spadesuit b = \frac{a^2-b^2}{2b-2a}$ . Given that $3 \spadesuit x = -10$, compute $x$.

1949 Moscow Mathematical Olympiad, 161

Find the real roots of the equation $x^2 + 2ax + \frac{1}{16} = -a +\sqrt{ a^2 + x - \frac{1}{16} }$ , $\left(0 < a < \frac14 \right)$ .

2021 Iran MO (3rd Round), 3

Polynomial $P$ with non-negative real coefficients and function $f:\mathbb{R}^+\to \mathbb{R}^+$ are given such that for all $x, y\in \mathbb{R}^+$ we have $$f(x+P(x)f(y)) = (y+1)f(x)$$ (a) Prove that $P$ has degree at most 1. (b) Find all function $f$ and non-constant polynomials $P$ satisfying the equality.

2015 AMC 12/AHSME, 20

For every positive integer $n$, let $\operatorname{mod_5}(n)$ be the remainder obtained when $n$ is divided by $5$. Define a function $f : \{0, 1, 2, 3, \dots\} \times \{0, 1, 2, 3, 4\} \to \{0, 1, 2, 3, 4\}$ recursively as follows: \[f(i, j) = \begin{cases} \operatorname{mod_5}(j+1) & \text{if }i=0\text{ and }0\leq j\leq 4 \\ f(i-1, 1) & \text{if }i\geq 1\text{ and }j=0 \text{, and}\\ f(i-1, f(i, j-1)) & \text{if }i\geq 1\text{ and }1\leq j\leq 4 \end{cases}\] What is $f(2015, 2)$? $\textbf{(A) }0 \qquad\textbf{(B) }1 \qquad\textbf{(C) }2 \qquad\textbf{(D) }3 \qquad\textbf{(E) }4$

2017 CMIMC Algebra, 1

Tags: algebra
The residents of the local zoo are either rabbits or foxes. The ratio of foxes to rabbits in the zoo is $2:3$. After $10$ of the foxes move out of town and half the rabbits move to Rabbitretreat, the ratio of foxes to rabbits is $13:10$. How many animals are left in the zoo?

KoMaL A Problems 2017/2018, A. 709

Let $a>0$ be a real number. Find the minimal constant $C_a$ for which the inequality$$\displaystyle C_a\sum_{k=1}^n \frac1{x_k-x_{k-1}} >\sum_{k=1}^n \frac{k+a}{x_k}$$holds for any positive integer $n$ and any sequence $0=x_0<x_1<\cdots <x_n$ of real numbers.

2010 Mid-Michigan MO, 10-12

[b]p1.[/b] Find all solutions $a, b, c, d, e, f, g$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccccc} & & & a & b & c & d \\ x & & & & & a & b \\ \hline & & c & d & b & d & b \\ + & c & e & b & f & b & \\ \hline & c & g & a & e & g & b \\ \end{tabular}$ [b]p2.[/b] $5$ numbers are placed on the circle. It is known that the sum of any two neighboring numbers is not divisible by $3$ and the sum of any three consecutive numbers is not divisible by $3$. How many numbers on the circle are divisible by $3$? [b]p3.[/b] $n$ teams played in a volleyball tournament. Each team played precisely one game with all other teams. If $x_j$ is the number of victories and $y_j$ is the number of losses of the $j$th team, show that $$\sum^n_{j=1}x^2_j=\sum^n_{j=1} y^2_j $$ [b]p4.[/b] Three cars participated in the car race: a Ford $[F]$, a Toyota $[T]$, and a Honda $[H]$. They began the race with $F$ first, then $T$, and $H$ last. During the race, $F$ was passed a total of $3$ times, $T$ was passed $5$ times, and $H$ was passed $8$ times. In what order did the cars finish? [b]p5.[/b] The side of the square is $4$ cm. Find the sum of the areas of the six half-disks shown on the picture. [img]https://cdn.artofproblemsolving.com/attachments/c/b/73be41b9435973d1c53a20ad2eb436b1384d69.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1957 Putnam, A4

Let $P(z)$ be a polynomial with real coefficients whose roots are covered by a disk of radius R. Prove that for any real number $k$, the roots of the polynomial $nP(z)-kP'(z)$ can be covered by a disk of radius $R+|k|$, where $n$ is the degree of $P(z)$, and $P'(z)$ is the derivative of $P(z)$. can anyone help me? It would also be extremely helpful if anyone could tell me where they've seen this type of problems.............Has it appeared in any mathematics competitions? Or are there any similar questions for me to attempt? Thanks in advance!

2024 Turkey Junior National Olympiad, 4

Let $n\geq 2$ be an integer and $a_1,a_2,\cdots,a_n>1$ be real numbers. Prove that the inequality below holds. $$\prod_{i=1}^n\left(a_ia_{i+1}-\frac{1}{a_ia_{i+1}}\right)\geq 2^n\prod_{i=1}^n\left(a_i-\frac{1}{a_i}\right)$$

2012 CHMMC Spring, Individual

[b]p1.[/b] A robot is at position $0$ on a number line. Each second, it randomly moves either one unit in the positive direction or one unit in the negative direction, with probability $\frac12$ of doing each. Find the probability that after $4$ seconds, the robot has returned to position $0$. [b]p2.[/b] How many positive integers $n \le 20$ are such that the greatest common divisor of $n$ and $20$ is a prime number? [b]p3.[/b] A sequence of points $A_1$, $A_2$, $A_3$, $...$, $A_7$ is shown in the diagram below, with $A_1A_2$ parallel to $A_6A_7$. We have $\angle A_2A_3A_4 = 113^o$, $\angle A_3A_4A_5 = 100^o$, and $\angle A_4A_5A_6 = 122^o$. Find the degree measure of $\angle A_1A_2A_3 + \angle A_5A_6A_7$. [center][img]https://cdn.artofproblemsolving.com/attachments/d/a/75b06a6663b2f4258e35ef0f68fcfbfaa903f7.png[/img][/center] [b]p4.[/b] Compute $$\log_3 \left( \frac{\log_3 3^{3^{3^3}}}{\log_{3^3} 3^{3^3}} \right)$$ [b]p5.[/b] In an $8\times 8$ chessboard, a pawn has been placed on the third column and fourth row, and all the other squares are empty. It is possible to place nine rooks on this board such that no two rooks attack each other. How many ways can this be done? (Recall that a rook can attack any square in its row or column provided all the squares in between are empty.) [b]p6.[/b] Suppose that $a, b$ are positive real numbers with $a > b$ and $ab = 8$. Find the minimum value of $\frac{a^2+b^2}{a-b} $. [b]p7.[/b] A cone of radius $4$ and height $7$ has $A$ as its apex and $B$ as the center of its base. A second cone of radius $3$ and height $7$ has $B$ as its apex and $A$ as the center of its base. What is the volume of the region contained in both cones? [b]p8.[/b] Let $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$ be a permutation of the numbers $1$, $2$, $3$, $4$, $5$, $6$. We say $a_i$ is visible if $a_i$ is greater than any number that comes before it; that is, $a_j < a_i$ for all $j < i$. For example, the permutation $2$, $4$, $1$, $3$, $6$, $5$ has three visible elements: $2$, $4$, $6$. How many such permutations have exactly two visible elements? [b]p9.[/b] Let $f(x) = x+2x^2 +3x^3 +4x^4 +5x^5 +6x^6$, and let $S = [f(6)]^5 +[f(10)]^3 +[f(15)]^2$. Compute the remainder when $S$ is divided by $30$. [b]p10.[/b] In triangle $ABC$, the angle bisector from $A$ and the perpendicular bisector of $BC$ meet at point $D$, the angle bisector from $B$ and the perpendicular bisector of $AC$ meet at point $E$, and the perpendicular bisectors of $BC$ and $AC$ meet at point $F$. Given that $\angle ADF = 5^o$, $\angle BEF = 10^o$, and $AC = 3$, find the length of $DF$. [img]https://cdn.artofproblemsolving.com/attachments/6/d/6bb8409678a4c44135d393b9b942f8defb198e.png[/img] [b]p11.[/b] Let $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. How many subsets $S$ of $\{1, 2,..., 2011\}$ are there such that $$F_{2012} - 1 =\sum_{i \in S}F_i?$$ [b]p12.[/b] Let $a_k$ be the number of perfect squares $m$ such that $k^3 \le m < (k + 1)^3$. For example, $a_2 = 3$ since three squares $m$ satisfy $2^3 \le m < 3^3$, namely $9$, $16$, and $25$. Compute$$ \sum^{99}_{k=0} \lfloor \sqrt{k}\rfloor a_k, $$ where $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$. [b]p13.[/b] Suppose that $a, b, c, d, e, f$ are real numbers such that $$a + b + c + d + e + f = 0,$$ $$a + 2b + 3c + 4d + 2e + 2f = 0,$$ $$a + 3b + 6c + 9d + 4e + 6f = 0,$$ $$a + 4b + 10c + 16d + 8e + 24f = 0,$$ $$a + 5b + 15c + 25d + 16e + 120f = 42.$$ Compute $a + 6b + 21c + 36d + 32e + 720f.$ [b]p14.[/b] In Cartesian space, three spheres centered at $(-2, 5, 4)$, $(2, 1, 4)$, and $(4, 7, 5)$ are all tangent to the $xy$-plane. The $xy$-plane is one of two planes tangent to all three spheres; the second plane can be written as the equation $ax + by + cz = d$ for some real numbers $a$, $b$, $c$, $d$. Find $\frac{c}{a}$ . [b]p15.[/b] Find the number of pairs of positive integers $a$, $b$, with $a \le 125$ and $b \le 100$, such that $a^b - 1$ is divisible by $125$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].