This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Purple Comet Problems, 14

There are positive integers $b$ and $c$ such that the polynomial $2x^2 + bx + c$ has two real roots which differ by $30.$ Find the least possible value of $b + c.$

2025 Romania National Olympiad, 3

a) Let $a\in \mathbb{R}$ and $f \colon \mathbb{R} \to \mathbb{R}$ be a continuous function for which there exists an antiderivative $F \colon \mathbb{R} \to \mathbb{R} $, such that $F(x)+a\cdot f(x) \geq 0$, for any $x \in \mathbb{R}$, and$ \lim_{|x| \to \infty} \frac{F(x)}{e^{|\alpha \cdot x|}}=0$ holds for any $\alpha \in \mathbb{R}^*$. Prove that $F(x) \geq 0$ for all $x \in \mathbb{R}$. b) Let $n\geq 2$ be a positive integer, $g \in \mathbb{R}[X]$, $g = X^n + a_1X^{n-1}+ \dots + a_{n-1}X+a_n$ be a polynomial with all of its roots being real, and $f \colon \mathbb{R} \to \mathbb{R}$ a polynomial function such that $f(x)+a_1\cdot f'(x)+a_2\cdot f^{(2)}(x)+\dots+a_n\cdot f^{(n)}(x) \geq 0$ for any $x \in \mathbb{R}$. Prove that $f(x) \geq 0$ for all $x \in \mathbb{R}$.

2023 District Olympiad, P2

Let $(G,\cdot)$ be a grup with neutral element $e{}$, and let $H{}$ and $K$ be proper subgroups of $G$, satisfying $H\cap K=\{e\}$. It is known that $(G\setminus(H\cup K))\cup\{e\}$ is closed under the operation of $G$. Prove that $x^2=e$ for all the elements $x{}$ of $G{}$.

2010 Contests, 1

Show that $\frac{(x - y)^7 + (y - z)^7 + (z - x)^7 - (x - y)(y - z)(z - x) ((x - y)^4 + (y - z)^4 + (z - x)^4)} {(x - y)^5 + (y - z)^5 + (z - x)^5} \ge 3$ holds for all triples of distinct integers $x, y, z$. When does equality hold?

2010 Iran MO (3rd Round), 1

[b]two variable ploynomial[/b] $P(x,y)$ is a two variable polynomial with real coefficients. degree of a monomial means sum of the powers of $x$ and $y$ in it. we denote by $Q(x,y)$ sum of monomials with the most degree in $P(x,y)$. (for example if $P(x,y)=3x^4y-2x^2y^3+5xy^2+x-5$ then $Q(x,y)=3x^4y-2x^2y^3$.) suppose that there are real numbers $x_1$,$y_1$,$x_2$ and $y_2$ such that $Q(x_1,y_1)>0$ , $Q(x_2,y_2)<0$ prove that the set $\{(x,y)|P(x,y)=0\}$ is not bounded. (we call a set $S$ of plane bounded if there exist positive number $M$ such that the distance of elements of $S$ from the origin is less than $M$.) time allowed for this question was 1 hour.

1976 IMO, 2

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

2005 Vietnam National Olympiad, 1

Tags: function , algebra
Find all function $ f: \mathbb R\to \mathbb R$ satisfying the condition: \[ f(f(x \minus{} y)) \equal{} f(x)\cdot f(y) \minus{} f(x) \plus{} f(y) \minus{} xy \]

PEN N Problems, 9

Let $ q_{0}, q_{1}, \cdots$ be a sequence of integers such that a) for any $ m > n$, $ m \minus{} n$ is a factor of $ q_{m} \minus{} q_{n}$, b) item $ |q_n| \le n^{10}$ for all integers $ n \ge 0$. Show that there exists a polynomial $ Q(x)$ satisfying $ q_{n} \equal{} Q(n)$ for all $ n$.

2018 Tuymaada Olympiad, 1

Tags: algebra , quadratic
Do there exist three different quadratic trinomials $f(x), g(x), h(x)$ such that the roots of the equation $f(x)=g(x)$ are $1$ and $4$, the roots of the equation $g(x)=h(x)$ are $2$ and $5$, and the roots of the equation $h(x)=f(x)$ are $3$ and $6$? [i]Proposed by A. Golovanov[/i]

2022 Belarusian National Olympiad, 8.7

A polynomial $p(x)$ with integer coefficients satisfies the equality $$p(\sqrt{2}+\sqrt{3})=\sqrt{2}-\sqrt{3}$$ a) Find all possible values of $p(\sqrt{2}-\sqrt{3})$ b) Find an example of any polynomial $p(x)$ which satisfies the condition.

1999 Moldova Team Selection Test, 16

Tags: function , algebra
Define functions $f,g: \mathbb{R}\to \mathbb{R}$, $g$ is injective, satisfy: \[f(g(x)+y)=g(f(y)+x)\]

2010 China Team Selection Test, 2

Let $A=\{a_1,a_2,\cdots,a_{2010}\}$ and $B=\{b_1,b_2,\cdots,b_{2010}\}$ be two sets of complex numbers. Suppose \[\sum_{1\leq i<j\leq 2010} (a_i+a_j)^k=\sum_{1\leq i<j\leq 2010}(b_i+b_j)^k\] holds for every $k=1,2,\cdots, 2010$. Prove that $A=B$.

2012 NIMO Problems, 9

Let $f(x) = x^2 - 2x$. A set of real numbers $S$ is [i]valid[/i] if it satisfies the following: $\bullet$ If $x \in S$, then $f(x) \in S$. $\bullet$ If $x \in S$ and $\underbrace{f(f(\dots f}_{k\ f\text{'s}}(x)\dots )) = x$ for some integer $k$, then $f(x) = x$. Compute the number of 7-element valid sets. [i]Proposed by Lewis Chen[/i]

2018 Regional Olympiad of Mexico Southeast, 6

Find all polynomials $p(x)$ such that for all reals $a, b$ and $c$, with $a+b+c=0$, satisfies $$p(a^3)+p(b^3)+p(c^3)=3p(abc)$$

2012 Philippine MO, 2

Let $f$ be a polynomial function with integer coefficients and $p$ be a prime number. Suppose there are at least four distinct integers satisfying $f(x) = p$. Show that $f$ does not have integer zeros.

MathLinks Contest 6th, 5.2

Tags: algebra
Let $n \ge 5$ be an integer and let $x_1, x_2, ... , x_n$ be $n$ distinct integer numbers such that no $3$ of them can be in arithmetic progression. Prove that if for all $1 \le i, j \le n$ we have $$2|x_i - x_j | \le n(n - 1)$$ then there exist $4$ distinct indices $i, j, k, l \in \{1, 2, ... , n\}$ such that $$x_i + x_j = x_k + x_l.$$

2022 Harvard-MIT Mathematics Tournament, 1

Tags: algebra
Positive integers $a$, $b$, and $c$ are all powers of $k$ for some positive integer $k$. It is known that the equation $ax^2-bx+c=0$ has exactly one real solution $r$, and this value $r$ is less than $100$. Compute the maximum possible value of $r$.

2016 India Regional Mathematical Olympiad, 4

Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Determine, with certainty, the largest possible value of the expression $$ \frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}$$

2016 China Team Selection Test, 5

Does there exist two infinite positive integer sets $S,T$, such that any positive integer $n$ can be uniquely expressed in the form $$n=s_1t_1+s_2t_2+\ldots+s_kt_k$$ ,where $k$ is a positive integer dependent on $n$, $s_1<\ldots<s_k$ are elements of $S$, $t_1,\ldots, t_k$ are elements of $T$?

2007 Vietnam National Olympiad, 1

Solve the system of equations: $\{\begin{array}{l}(1+\frac{12}{3x+y}).\sqrt{x}=2\\(1-\frac{12}{3x+y}).\sqrt{y}=6\end{array}$

2024 ELMO Shortlist, A3

Find all functions $f : \mathbb{R}\to\mathbb{R}$ such that for all real numbers $x$ and $y$, $$f(x+f(y))+xy=f(x)f(y)+f(x)+y.$$ [i]Andrew Carratu[/i]

2008 All-Russian Olympiad, 2

Tags: algebra , ratio
Petya and Vasya are given equal sets of $ N$ weights, in which the masses of any two weights are in ratio at most $ 1.25$. Petya succeeded to divide his set into $ 10$ groups of equal masses, while Vasya succeeded to divide his set into $ 11$ groups of equal masses. Find the smallest possible $ N$.

2010 IMAC Arhimede, 6

Consider real numbers $a, b ,c \ge0$ with $a+b+c=2$. Prove that: $\frac{bc}{\sqrt[4]{3a^2+4}}+\frac{ca}{\sqrt[4]{3b^2+4}}+\frac{ab}{\sqrt[4]{3c^2+4}} \le \frac{2*\sqrt[4] {3}}{3}$

2010 Contests, 2

Find all the continuous functions $f : \mathbb{R} \mapsto\mathbb{R}$ such that $\forall x,y \in \mathbb{R}$, $(1+f(x)f(y))f(x+y)=f(x)+f(y)$.

1991 USAMO, 2

For any nonempty set $\,S\,$ of numbers, let $\,\sigma(S)\,$ and $\,\pi(S)\,$ denote the sum and product, respectively, of the elements of $\,S\,$. Prove that \[ \sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right) (n+1), \] where ``$\Sigma$'' denotes a sum involving all nonempty subsets $S$ of $\{1,2,3, \ldots,n\}$.