This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Federal Competition For Advanced Students, Part 1, 2

For a positive integer $n$, we define the function $f_n(x)=\sum_{k=1}^n |x-k|$ for all real numbers $x$. For any two-digit number $n$ (in decimal representation), determine the set of solutions $\mathbb{L}_n$ of the inequality $f_n(x)<41$. [i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 2)[/i]

2002 Austrian-Polish Competition, 7

Find all real functions $f$ definited on positive integers and satisying: (a) $f(x+22)=f(x)$, (b) $f\left(x^{2}y\right)=\left(f(x)\right)^{2}f(y)$ for all positive integers $x$ and $y$.

1999 Estonia National Olympiad, 2

Tags: algebra , sum
Find the value of the expression $$f\left( \frac{1}{2000} \right)+f\left( \frac{2}{2000} \right)+...+ f\left( \frac{1999}{2000} \right)+f\left( \frac{2000}{2000} \right)+f\left( \frac{2000}{1999} \right)+...+f\left( \frac{2000}{1} \right)$$ assuming $f(x) =\frac{x^2}{1 + x^2}$ .

2002 China Second Round Olympiad, 2

Tags: algebra
There are real numbers $a,b$ and $c$ and a positive number $\lambda$ such that $f(x)=x^3+ax^2+bx+c$ has three real roots $x_1, x_2$ and $x_3$ satisfying $(1) x_2-x_1=\lambda$ $(2) x_3>\frac{1}{2}(x_1+x_2)$. Find the maximum value of $\frac{2a^3+27c-9ab}{\lambda^3}$

2012 Junior Balkan Team Selection Tests - Romania, 4

Consider the set $A = \{1, 2, 3, ..., 2n - 1\}$, where $n \ge 2$ is a positive integer. We remove from the set $A$ at least $n - 1$ elements such that: • if $a \in A$ has been removed, and $2a \in A$, then $2a$ has also been removed, • if $a, b \in A (a \ne b)$ have been removed and $a + b \in A$, then $a + b$ has also been removed. Which numbers have to be removed such that the sum of the remaining numbers is maximum?

1987 IMO, 1

Prove that there is no function $f$ from the set of non-negative integers into itself such that $f(f(n))=n+1987$ for all $n$.

KoMaL A Problems 2022/2023, A. 854

Prove that \[\sum_{k=0}^n\frac{2^{2^k}\cdot 2^{k+1}}{2^{2^k}+3^{2^k}}<4\] holds for all positive integers $n$. [i]Submitted by Béla Kovács, Szatmárnémeti[/i]

2011 JBMO Shortlist, 6

Let $\displaystyle {x_i> 1, \forall i \in \left \{1, 2, 3, \ldots, 2011 \right \}}$. Show that:$$\displaystyle{\frac{x^2_1}{x_2-1}+\frac{x^2_2}{x_3-1}+\frac{x^2_3}{x_4-1}+\ldots+\frac{x^2_{2010}}{x_{2011}-1}+\frac{x^2_{2011}}{x_1-1}\geq 8044}$$ When the equality holds?

2012 Belarus Team Selection Test, 3

Given a polynomial $P(x)$ with positive real coefficients. Prove that $P(1)P(xy) \ge P(x)P(y)$ for all $x\ge1, y \ge 1$. (K. Gorodnin)

1987 Greece Junior Math Olympiad, 3

Find real $a,b$ such that polynomial $P(x)=x^{n+1}+ax+b$ to be divisible by $(x-1)^2$. Then find the quotient $P(x):(x-1)^2 , n\in \mathbb{N}^*$

2012 District Olympiad, 2

Let $(A,+,\cdot)$ a 9 elements ring. Prove that the following assertions are equivalent: (a) For any $x\in A\backslash\{0\}$ there are two numbers $a\in \{-1,0,1\}$ and $b\in \{-1,1\}$ such that $x^2+ax+b=0$. (b) $(A,+,\cdot)$ is a field.

2020 Ecuador NMO (OMEC), 4

Find all polynomials $P(x)$ such that, for all real numbers $x, y, z$ that satisfy $x+ y +z =0$, $$P(x) +P(y) +P(z)=0$$

2022 China Team Selection Test, 6

Let $m,n$ be two positive integers with $m \ge n \ge 2022$. Let $a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_n$ be $2n$ real numbers. Prove that the numbers of ordered pairs $(i,j) ~(1 \le i,j \le n)$ such that \[ |a_i+b_j-ij| \le m \] does not exceed $3n\sqrt{m \log n}$.

LMT Team Rounds 2010-20, 2018 Fall

[b]p1.[/b] Evaluate $1+3+5+··· +2019$. [b]p2.[/b] Evaluate $1^2 -2^2 +3^2 -4^2 +...· +99^2 -100^2$. [b]p3. [/b]Find the sum of all solutions to $|2018+|x -2018|| = 2018$. [b]p4.[/b] The angles in a triangle form a geometric series with common ratio $\frac12$ . Find the smallest angle in the triangle. [b]p5.[/b] Compute the number of ordered pairs $(a,b,c,d)$ of positive integers $1 \le a,b,c,d \le 6$ such that $ab +cd$ is a multiple of seven. [b]p6.[/b] How many ways are there to arrange three birch trees, four maple, and five oak trees in a row if trees of the same species are considered indistinguishable. [b]p7.[/b] How many ways are there for Mr. Paul to climb a flight of 9 stairs, taking steps of either two or three at a time? [b]p8.[/b] Find the largest natural number $x$ for which $x^x$ divides $17!$ [b]p9.[/b] How many positive integers less than or equal to $2018$ have an odd number of factors? [b]p10.[/b] Square $MAIL$ and equilateral triangle $LIT$ share side $IL$ and point $T$ is on the interior of the square. What is the measure of angle $LMT$? [b]p11.[/b] The product of all divisors of $2018^3$ can be written in the form $2^a \cdot 2018^b$ for positive integers $a$ and $b$. Find $a +b$. [b]p12.[/b] Find the sum all four digit palindromes. (A number is said to be palindromic if its digits read the same forwards and backwards. [b]p13.[/b] How ways are there for an ant to travel from point $(0,0)$ to $(5,5)$ in the coordinate plane if it may only move one unit in the positive x or y directions each step, and may not pass through the point $(1, 1)$ or $(4, 4)$? [b]p14.[/b] A certain square has area $6$. A triangle is constructed such that each vertex is a point on the perimeter of the square. What is the maximum possible area of the triangle? [b]p15.[/b] Find the value of ab if positive integers $a,b$ satisfy $9a^2 -12ab +2b^2 +36b = 162$. [b]p16.[/b] $\vartriangle ABC$ is an equilateral triangle with side length $3$. Point $D$ lies on the segment $BC$ such that $BD = 1$ and $E$ lies on $AC$ such that $AE = AD$. Compute the area of $\vartriangle ADE$. [b]p17[/b]. Let $A_1, A_2,..., A_{10}$ be $10$ points evenly spaced out on a line, in that order. Points $B_1$ and $B_2$ lie on opposite sides of the perpendicular bisector of $A_1A_{10}$ and are equidistant to $l$. Lines $B_1A_1,...,B_1A_{10}$ and $B_2A_1,...· ,B_2A_{10}$ are drawn. How many triangles of any size are present? [b]p18.[/b] Let $T_n = 1+2+3··· +n$ be the $n$th triangular number. Determine the value of the infinite sum $\sum_{k\ge 1} \frac{T_k}{2^k}$. [b]p19.[/b] An infinitely large bag of coins is such that for every $0.5 < p \le 1$, there is exactly one coin in the bag with probability $p$ of landing on heads and probability $1- p$ of landing on tails. There are no other coins besides these in the bag. A coin is pulled out of the bag at random and when flipped lands on heads. Find the probability that the coin lands on heads when flipped again. [b]p20.[/b] The sequence $\{x_n\}_{n\ge 1}$ satisfies $x1 = 1$ and $(4+ x_1 + x_2 +··· + x_n)(x_1 + x_2 +··· + x_{n+1}) = 1$ for all $n \ge 1$. Compute $\left \lfloor \frac{x_{2018}}{x_{2019}} \right \rfloor$. PS. You had better use hide for answers.

2014 Abels Math Contest (Norwegian MO) Final, 1a

Assume that $x, y \ge 0$. Show that $x^2 + y^2 + 1 \le \sqrt{(x^3 + y + 1)(y^3 + x + 1)}$.

2010 Contests, 3

Find all two-variable polynomials $p(x,y)$ such that for each $a,b,c\in\mathbb R$: \[p(ab,c^2+1)+p(bc,a^2+1)+p(ca,b^2+1)=0\]

2022 Bulgaria EGMO TST, 5

Tags: algebra
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$. [i]Proposed by Dominik Burek and Tomasz Ciesla, Poland[/i]

2007 Bulgarian Autumn Math Competition, Problem 10.1

Find all integers $b$ and $c$ for which the equation $x^2-bx+c=0$ has two real roots $x_{1}$ and $x_{2}$ satisfying $x_{1}^2+x_{2}^2=5$.

2023 Mid-Michigan MO, 10-12

[b]p1.[/b] There are $16$ students in a class. Each month the teacher divides the class into two groups. What is the minimum number of months that must pass for any two students to be in different groups in at least one of the months? [b]p2.[/b] Find all functions $f(x)$ defined for all real $x$ that satisfy the equation $2f(x) + f(1 - x) = x^2$. [b]p3.[/b] Arrange the digits from $1$ to $9$ in a row (each digit only once) so that every two consecutive digits form a two-digit number that is divisible by $7$ or $13$. [b]p4.[/b] Prove that $\cos 1^o$ is irrational. [b]p5.[/b] Consider $2n$ distinct positive Integers $a_1,a_2,...,a_{2n}$ not exceeding $n^2$ ($n>2$). Prove that some three of the differences $a_i- a_j$ are equal . PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1980 USAMO, 5

Prove that for numbers $a,b,c$ in the interval $[0,1]$, \[\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c) \le 1.\]

1993 Polish MO Finals, 2

Find all real-valued functions $f$ on the reals such that $f(-x) = -f(x)$, $f(x+1) = f(x) + 1$ for all $x$, and $f\left(\dfrac{1}{x}\right) = \dfrac{f(x)}{x^2}$ for $x \not = 0$.

1998 Baltic Way, 7

Let $\mathbb{R}$ be the set of all real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying for all $x,y\in\mathbb{R}$ the equation $f(x)+f(y)=f(f(x)f(y))$.

1953 Moscow Mathematical Olympiad, 238

Prove that if in the following fraction we have $n$ radicals in the numerator and $n - 1$ in the denominator, then $$\frac{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\frac14$$

1992 All Soviet Union Mathematical Olympiad, 564

Find all real $x, y$ such that $$\begin{cases}(1 + x)(1 + x^2)(1 + x^4) = 1+ y^7 \\ (1 + y)(1 + y^2)(1 + y^4) = 1+ x^7 \end{cases}$$

2014 Math Hour Olympiad, 5-7

[u]Round 1[/u] [b]p1.[/b] Three snails – Alice, Bobby, and Cindy – were racing down a road. Whenever one snail passed another, it waved at the snail it passed. During the race, Alice waved $3$ times and was waved at twice. Bobby waved $4$ times and was waved at $3$ times. Cindy waved $5$ times. How many times was she waved at? [b]p2.[/b] Sherlock and Mycroft are playing Battleship on a $4\times 4$ grid. Mycroft hides a single $3\times 1$ cruiser somewhere on the board. Sherlock can pick squares on the grid and fire upon them. What is the smallest number of shots Sherlock has to fire to guarantee at least one hit on the cruiser? [b]p3.[/b] Thirty girls – $13$ of them in red dresses and $17$ in blue dresses – were dancing in a circle, hand-in-hand. Afterwards, each girl was asked if the girl to her right was in a blue dress. Only the girls who had both neighbors in red dresses or both in blue dresses told the truth. How many girls could have answered “Yes”? [b]p4.[/b] Herman and Alex play a game on a $5\times 5$ board. On his turn, a player can claim any open square as his territory. Once all the squares are claimed, the winner is the player whose territory has the longer border. Herman goes first. If both play their best, who will win, or will the game end in a draw? [img]https://cdn.artofproblemsolving.com/attachments/5/7/113d54f2217a39bac622899d3d3eb51ec34f1f.png[/img] [b]p5.[/b] Is it possible to find $2014$ distinct positive integers whose sum is divisible by each of them? [u]Round 2[/u] [b]p6.[/b] Hermione and Ron play a game that starts with 129 hats arranged in a circle. They take turns magically transforming the hats into animals. On each turn, a player picks a hat and chooses whether to change it into a badger or into a raven. A player loses if after his or her turn there are two animals of the same species right next to each other. Hermione goes first. Who loses? [b]p7.[/b] Three warring states control the corner provinces of the island whose map is shown below. [img]https://cdn.artofproblemsolving.com/attachments/e/a/4e2f436be1dcd3f899aa34145356f8c66cda82.png[/img] As a result of war, each of the remaining $18$ provinces was occupied by one of the states. None of the states was able to occupy any province on the coast opposite their corner. The states would like to sign a peace treaty. To do this, they each must send ambassadors to a place where three provinces, one controlled by each state, come together. Prove that they can always find such a place to meet. For example, if the provinces are occupied as shown here, the squares mark possible meeting spots. [img]https://cdn.artofproblemsolving.com/attachments/e/b/81de9187951822120fc26024c1c1fbe2138737.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].