Found problems: 15925
1986 ITAMO, 2
Determine the general term of the sequence ($a_n$) given by $a_0 =\alpha > 0$ and $a_{n+1} =\frac{a_n}{1+a_n}$
.
1985 Tournament Of Towns, (102) 6
The numerical sequence $x_1 , x_2 ,.. $ satisfies $x_1 = \frac12$ and $x_{k+1} =x^2_k+x_k$ for all natural integers $k$ . Find the integer part of the sum $\frac{1}{x_1+1}+\frac{1}{x_2+1}+...+\frac{1}{x_{100}+1}$
{A. Andjans, Riga)
2016 Baltic Way, 6
The set $\{1, 2, . . . , 10\}$ is partitioned to three subsets $A, B$ and $C.$ For each subset the sum of its elements, the product of its elements and the sum of the digits of all its elements are calculated.
Is it possible that $A$ alone has the largest sum of elements, $B$ alone has the largest product of elements, and $C$ alone has the largest sum of digits?
2022 Baltic Way, 4
The positive real numbers $x,y,z$ satisfy $xy+yz+zx=1$. Prove that:
$$ 2(x^2+y^2+z^2)+\frac{4}{3}\bigg (\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\bigg) \ge 5 $$
2020 Federal Competition For Advanced Students, P2, 6
The players Alfred and Bertrand put together a polynomial $x^n + a_{n-1}x^{n- 1} +... + a_0$ with the given degree $n \ge 2$. To do this, they alternately choose the value in $n$ moves one coefficient each, whereby all coefficients must be integers and $a_0 \ne 0$ must apply. Alfred's starts first . Alfred wins if the polynomial has an integer zero at the end.
(a) For which $n$ can Alfred force victory if the coefficients $a_j$ are from the right to the left, i.e. for $j = 0, 1,. . . , n - 1$, be determined?
(b) For which $n$ can Alfred force victory if the coefficients $a_j$ are from the left to the right, i.e. for $j = n -1, n - 2,. . . , 0$, be determined?
(Theresia Eisenkölbl, Clemens Heuberger)
2007 Indonesia TST, 2
Let $ a,b,c$ be non-zero real numbers satisfying \[ \dfrac{1}{a}\plus{}\dfrac{1}{b}\plus{}\dfrac{1}{c}\equal{}\dfrac{1}{a\plus{}b\plus{}c}.\] Find all integers $ n$ such that \[ \dfrac{1}{a^n}\plus{}\dfrac{1}{b^n}\plus{}\dfrac{1}{c^n}\equal{}\dfrac{1}{a^n\plus{}b^n\plus{}c^n}.\]
PEN E Problems, 12
Show that there are infinitely many primes.
1999 IMO Shortlist, 1
Let $n \geq 2$ be a fixed integer. Find the least constant $C$ such the inequality
\[\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C
\left(\sum_{i}x_{i} \right)^4\]
holds for any $x_{1}, \ldots ,x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant $C$, characterize the instances of equality.
2013 Poland - Second Round, 5
Let $W(x)$ be a polynomial of integer coefficients such that for any pair of different rational number $r_1$, $r_2$ dependence $W(r_1) \neq W(r_2)$ is true. Decide, whether the assuptions imply that for any pair of different real numbers $t_1$, $t_2$ dependence $W(t_1) \neq W(t_2)$ is true.
2019 Ukraine Team Selection Test, 2
Polynomial $p(x)$ with real coefficients, which is different from the constant, has the following property:
[i] for any naturals $n$ and $k$ the $\frac{p(n+1)p(n+2)...p(n+k)}{p(1)p(2)...p(k)}$ is an integer.[/i]
Prove that this polynomial is divisible by $x$.
2024 Belarus Team Selection Test, 2.2
A positive integer $n$ is given. Consider all polynomials $P(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_0$, whose coefficients are nonnegative integers, not exceeding $100$. Call $P$ [i]reducible[/i] if it can be factored into two non-constant polynomials with nonnegative integer coeffiecients, and [i]irreducible[/i] otherwise. Prove that the number of [i]irreducible[/i] polynomials is at least twice as big as the number of [i]reducible[/i] polynomials.
[i]D. Zmiaikou[/i]
2022 AMC 12/AHSME, 15
The roots of the polynomial $10x^3 - 39x^2 + 29x - 6$ are the height, length, and width of a rectangular box (right rectangular prism. A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
$\textbf{(A) }\frac{24}{5}\qquad\textbf{(B) }\frac{42}{5}\qquad\textbf{(C) }\frac{81}{5}\qquad\textbf{(D) }30\qquad\textbf{(E) }48$
2007 Indonesia TST, 2
Let $ a,b,c$ be non-zero real numbers satisfying \[ \dfrac{1}{a}\plus{}\dfrac{1}{b}\plus{}\dfrac{1}{c}\equal{}\dfrac{1}{a\plus{}b\plus{}c}.\] Find all integers $ n$ such that \[ \dfrac{1}{a^n}\plus{}\dfrac{1}{b^n}\plus{}\dfrac{1}{c^n}\equal{}\dfrac{1}{a^n\plus{}b^n\plus{}c^n}.\]
2018 Finnish National High School Mathematics Comp, 1
Eve and Martti have a whole number of euros.
Martti said to Eve: ''If you give give me three euros, so I have $n$ times the money compared to you. '' Eve in turn said to Martti: ''If you give me $n$ euros then I have triple the amount of money compared to you'' . Suppose, that both claims are valid.
What values can a positive integer $n$ get?
2001 China Team Selection Test, 1
For a given natural number $n > 3$, the real numbers $x_1, x_2, \ldots, x_n, x_{n + 1}, x_{n + 2}$ satisfy the conditions $0
< x_1 < x_2 < \cdots < x_n < x_{n + 1} < x_{n + 2}$. Find the minimum possible value of
\[\frac{(\sum _{i=1}^n \frac{x_{i + 1}}{x_i})(\sum _{j=1}^n \frac{x_{j + 2}}{x_{j +
1}})}{(\sum _{k=1}^n \frac{x_{k + 1} x_{k + 2}}{x_{k + 1}^2 + x_k
x_{k + 2}})(\sum _{l=1}^n \frac{x_{l + 1}^2 + x_l x_{l + 2}}{x_l
x_{l + 1}})}\] and find all $(n + 2)$-tuplets of real numbers $(x_1, x_2, \ldots, x_n, x_{n + 1}, x_{n + 2})$ which gives this value.
2023 Stars of Mathematics, 4
Determine all integers $n\geqslant 3$ such that there exist $n{}$ pairwise distinct real numbers $a_1,\ldots,a_n$ for which the sums $a_i+a_j$ over all $1\leqslant i<j\leqslant n$ form an arithmetic progression.
2010 Middle European Mathematical Olympiad, 1
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all $x, y\in\mathbb{R}$, we have
\[f(x+y)+f(x)f(y)=f(xy)+(y+1)f(x)+(x+1)f(y).\]
1993 Vietnam Team Selection Test, 2
A sequence $\{a_n\}$ is defined by: $a_1 = 1, a_{n+1} = a_n + \dfrac{1}{\sqrt{a_n}}$ for $n = 1, 2, 3, \ldots$. Find all real numbers $q$ such that the sequence $\{u_n\}$ defined by $u_n = a_n^q$, $n = 1, 2, 3, \ldots$ has nonzero finite limit when $n$ goes to infinity.
THERE MIGHT BE A TYPO!
2024 Kyiv City MO Round 1, Problem 4
For a positive integer $n$, does there exist a permutation of all its positive integer divisors $(d_1 , d_2 , \ldots, d_k)$ such that the equation $d_kx^{k-1} + \ldots + d_2x + d_1 = 0$ has a rational root, if:
a) $n = 2024$;
b) $n = 2025$?
[i]Proposed by Mykyta Kharin[/i]
2010 IMO Shortlist, 4
A sequence $x_1, x_2, \ldots$ is defined by $x_1 = 1$ and $x_{2k}=-x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \geq 1.$ Prove that $\forall n \geq 1$ $x_1 + x_2 + \ldots + x_n \geq 0.$
[i]Proposed by Gerhard Wöginger, Austria[/i]
1988 AIME Problems, 13
Find $a$ if $a$ and $b$ are integers such that $x^2 - x - 1$ is a factor of $ax^{17} + bx^{16} + 1$.
2000 Hong kong National Olympiad, 2
Define $a_1=1$ and $a_{n+1}=\frac{a_n}{n}+\frac{n}{a_n}$ for $n\in\mathbb{N}$. Find the greatest integer not exceeding $a_{2000}$ and prove your claim.
2001 Moldova National Olympiad, Problem 4
Let $P(x)=x^n+a_1x^{n-1}+\ldots+a_n$ ($n\ge2$) be a polynomial with integer coefficients having $n$ real roots $b_1,\ldots,b_n$. Prove that for $x_0\ge\max\{b_1,\ldots,b_n\}$,
$$P(x_0+1)\left(\frac1{x_0-b_1}+\ldots+\frac1{x_0-b_n}\right)\ge2n^2.$$
Mid-Michigan MO, Grades 7-9, 2005
[b]p1.[/b] Prove that no matter what digits are placed in the four empty boxes, the eight-digit number $9999\Box\Box\Box\Box$ is not a perfect square.
[b]p2.[/b] Prove that the number $m/3+m^2/2+m^3/6$ is integral for all integral values of $m$.
[b]p3.[/b] An elevator in a $100$ store building has only two buttons: UP and DOWN. The UP button makes the elevator go $13$ floors up, and the DOWN button makes it go $8$ floors down. Is it possible to go from the $13$th floor to the $8$th floor?
[b]p4.[/b] Cut the triangle shown in the picture into three pieces and rearrange them into a rectangle. (Pieces can not overlap.)
[img]https://cdn.artofproblemsolving.com/attachments/4/b/ca707bf274ed54c1b22c4f65d3d0b0a5cfdc56.png[/img]
[b]p5.[/b] Two players Tom and Sid play the following game. There are two piles of rocks, $7$ rocks in the first pile and $9$ rocks in the second pile. Each of the players in his turn can take either any amount of rocks from one pile or the same amount of rocks from both piles. The winner is the player who takes the last rock. Who does win in this game if Tom starts the game?
[b]p6.[/b] In the next long multiplication example each letter encodes its own digit. Find these digits.
$\begin{tabular}{ccccc}
& & & a & b \\
* & & & c & d \\
\hline
& & c & e & f \\
+ & & a & b & \\
\hline
& c & f & d & f \\
\end{tabular}$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 Romania National Olympiad, 3
Prove that among the elements of the sequence $\left( \left\lfloor n \sqrt 2 \right\rfloor + \left\lfloor n \sqrt 3 \right\rfloor \right)_{n \geq 0}$ are an infinity of even numbers and an infinity of odd numbers.