Found problems: 15925
2009 Junior Balkan Team Selection Test, 1
Given are natural numbers $ a,b$ and $ n$ such that $ a^2\plus{}2nb^2$ is a complete square. Prove that the number $ a^2\plus{}nb^2$ can be written as a sum of squares of $ 2$ natural numbers.
2015 Saudi Arabia GMO TST, 1
Find all functions $f : R \to R$ satisfying the following conditions
(a) $f(1) = 1$,
(b) $f(x + y) = f(x) + f(y)$, $\forall (x,y) \in R^2$
(c) $f\left(\frac{1}{x}\right) =\frac{ f(x)}{x^2 }$, $\forall x \in R -\{0\}$
Trần Nam Dũng
2003 Estonia National Olympiad, 2
Prove that for all positive real numbers $a, b$, and $c$ , $\sqrt[3]{abc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \ge 2\sqrt3$.
When does the equality occur?
1979 IMO Longlists, 8
The sequence $(a_n)$ of real numbers is defined as follows:
\[a_1=1, \qquad a_2=2, \quad \text{and} \quad a_n=3a_{n-1}-a_{n-2} , \ \ n \geq 3.\]
Prove that for $n \geq 3$, $a_n=\left[ \frac{a_{n-1}^2}{a_{n-2}} \right] +1$, where $[x]$ denotes the integer $p$ such that $p \leq x < p + 1$.
2015 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1.[/b] Six pirates – Captain Jack and his five crewmen – sit in a circle to split a treasure of $99$ gold coins. Jack must decide how many coins to take for himself and how many to give each crewman (not necessarily the same number to each). The five crewmen will then vote on Jack's decision. Each is greedy and will vote “aye” only if he gets more coins than each of his two neighbors. If a majority vote “aye”, Jack's decision is accepted. Otherwise Jack is thrown overboard and gets nothing. What is the most coins Captain Jack can take for himself and survive?
[b]p2[/b]. Rose and Bella take turns painting cells red and blue on an infinite piece of graph paper. On Rose's turn, she picks any blank cell and paints it red. Bella, on her turn, picks any blank cell and paints it blue. Bella wins if the paper has four blue cells arranged as corners of a square of any size with sides parallel to the grid lines. Rose goes first. Show that she cannot prevent Bella from winning.
[img]https://cdn.artofproblemsolving.com/attachments/d/6/722eaebed21a01fe43bdd0dedd56ab3faef1b5.png[/img]
[b]p3.[/b] A $25\times 25$ checkerboard is cut along the gridlines into some number of smaller square boards. Show that the total length of the cuts is divisible by $4$. For example, the cuts shown on the picture have total length $16$, which is divisible by $4$.
[img]https://cdn.artofproblemsolving.com/attachments/c/1/e152130e48b804fe9db807ef4f5cd2cbad4947.png[/img]
[b]p4.[/b] Each robot in the Martian Army is equipped with a battery that lasts some number of hours. For any two robots, one's battery lasts at least three times as long as the other's. A robot works until its battery is depleted, then recharges its battery until it is full, then goes back to work, and so on. A battery that lasts $N$ hours takes exactly $N$ hours to recharge. Prove that there will be a moment in time when all the robots are recharging (so you can invade the planet).
[b]p5.[/b] A casino machine accepts tokens of $32$ different colors, one at a time. For each color, the player can choose between two fixed rewards. Each reward is up to $\$10$ cash, plus maybe another token. For example, a blue token always gives the player a choice of getting either $\$5$ plus a red token or $\$3$ plus a yellow token; a black token can always be exchanged either for $\$10$ (but no token) or for a brown token (but no cash). A player may keep playing as long as he has a token. Rob and Bob each have one white token. Rob watches Bob play and win $\$500$. Prove that Rob can win at least $\$1000$.
[img]https://cdn.artofproblemsolving.com/attachments/6/6/e55614bae92233c9b2e7d66f5f425a18e6475a.png
[/img]
[u]Round 2[/u]
[b]p6.[/b] The sum of $2015$ rational numbers is an integer. The product of every pair of them is also an integer. Prove that they are all integers.
(A rational number is one that can be written as $m/n$, where $m$ and $n$ are integers and $n\ne 0$.)
[b]p7.[/b] An $N \times N$ table is filled with integers such that numbers in cells that share a side differ by at most $1$. Prove that there is some number that appears in the table at least $N$ times. For example, in the $5 \times 5$ table below the numbers $1$ and $2$ appear at least $5$ times.
[img]https://cdn.artofproblemsolving.com/attachments/3/8/fda513bcfbe6834d88fb8ca0bfcdb504d8b859.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
IV Soros Olympiad 1997 - 98 (Russia), 11.10
Let $a_n = \frac{\pi}{2n}$, where $n$ is a natural number. Prove that for any $k = 1$,$2$,$...$, $n$ holds the equality $$\frac{\sin ka_n}{1-\cos a_n}+\frac{\sin 5ka_n}{1-\cos 5a_n}+\frac{\sin 9ka_n}{1-\cos 9a_n}+...+\frac{\sin (4n-3)a_n}{1-\cos (4n-3)a_n}=kn$$
2004 Bulgaria Team Selection Test, 1
Find the maximum possible value of the product of distinct positive integers whose sum is $2004$.
2009 Jozsef Wildt International Math Competition, W. 2
Find the area of the set $A = \{(x, y)\ |\ 1 \leq x \leq e,\ 0 \leq y \leq f (x)\}$, where \begin{tabular}{ c| c c c c |}
&1 & 1& 1 & 1\\
$f(x)$=& $\ln x$ & 2$\ln x$ & 3$\ln x$ & 4$\ln x$ \\
&${(\ln x)}^2$ & $4{(\ln x)}^2 $& $9{(\ln x)}^2 $& $16{(\ln x)}^2$\\
&${(\ln x)}^3$ & $8{(\ln x)}^3$ &$ 27{(\ln x)}^3$ &$ 64{(\ln x)}^3$
\end{tabular}
2015 Thailand TSTST, 1
Let $A$ and $B$ be nonempty sets and let $f : A \to B$. Prove that the following statements are equivalent:
$\text{(i) }$ $f$ is surjective.
$\text{(ii)} $ For every set $C$ and and every functions $g, h : B \to C$, if $g\circ f = h \circ f$ then $g = h$.
EMCC Guts Rounds, 2022
[u]Round 1[/u]
[b]p1.[/b] Let $ABCDEF$ be a regular hexagon. How many acute triangles have all their vertices among the vertices of $ABCDEF$?
[b]p2.[/b] A rectangle has a diagonal of length $20$. If the width of the rectangle is doubled, the length of the diagonal becomes $22$. Given that the width of the original rectangle is $w$, compute $w^2$.
[b]p3.[/b] The number $\overline{2022A20B22}$ is divisible by 99. What is $A + B$?
[u]Round 2[/u]
[b]p4.[/b] How many two-digit positive integers have digits that sum to at least $16$?
[b]p5.[/b] For how many integers $k$ less than $10$ do there exist positive integers x and y such that $k =x^2 - xy + y^2$?
[b]p6.[/b] Isosceles trapezoid $ABCD$ is inscribed in a circle of radius $2$ with $AB \parallel CD$, $AB = 2$, and one of the interior angles of the trapezoid equal to $110^o$. What is the degree measure of minor arc $CD$?
[u]Round 3[/u]
[b]p7.[/b] In rectangle $ALEX$, point $U$ lies on side $EX$ so that $\angle AUL = 90^o$. Suppose that $UE = 2$ and $UX = 12$. Compute the square of the area of $ALEX$.
[b]p8.[/b] How many digits does $20^{22}$ have?
[b]p9.[/b] Compute the units digit of $3 + 3^3 + 3^{3^3} + ... + 3^{3^{...{^3}}}$ , where the last term of the series has $2022$ $3$s.
[u]Round 4[/u]
[b]p10.[/b] Given that $\sqrt{x - 1} + \sqrt{x} = \sqrt{x + 1}$ for some real number $x$, the number $x^2$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]p11.[/b] Eric the Chicken Farmer arranges his $9$ chickens in a $3$-by-$3$ grid, with each chicken being exactly one meter away from its closest neighbors. At the sound of a whistle, each chicken simultaneously chooses one of its closest neighbors at random and moves $\frac12$ of a unit towards it. Given that the expected number of pairs of chickens that meet can be written as $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers, compute $p + q$.
[b]p12.[/b] For a positive integer $n$, let $s(n)$ denote the sum of the digits of $n$ in base $10$. Find the greatest positive integer $n$ less than $2022$ such that $s(n) = s(n^2)$.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949432p26408285]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 German National Olympiad, 6
Suppose that real numbers $x,y$ and $z$ satisfy the following equations:
\begin{align*}
x+\frac{y}{z} &=2,\\
y+\frac{z}{x} &=2,\\
z+\frac{x}{y} &=2.
\end{align*}
Show that $s=x+y+z$ must be equal to $3$ or $7$.
[i]Note:[/i] It is not required to show the existence of such numbers $x,y,z$.
1988 IMO Longlists, 24
Find the positive integers $x_1, x_2, \ldots, x_{29}$ at least one of which is greater that 1988 so that
\[ x^2_1 + x^2_2 + \ldots x^2_{29} = 29 \cdot x_1 \cdot x_2 \ldots x_{29}. \]
2017 Israel National Olympiad, 4
Three rational number $x,p,q$ satisfy $p^2-xq^2$=1. Prove that there are integers $a,b$ such that $p=\frac{a^2+xb^2}{a^2-xb^2}$ and $q=\frac{2ab}{a^2-xb^2}$.
BIMO 2022, Open
Given $k\ge 2$, for which polynomials $P\in \mathbb{Z}[X]$ does there exist a function $h:\mathbb{N}\rightarrow\mathbb{N}$ with $h^{(k)}(n)=P(n)$?
2018 Hanoi Open Mathematics Competitions, 6
Three students $A, B$ and $C$ are traveling from a location on the National Highway No.$5$ on direction to Hanoi for participating the HOMC $2018$. At beginning, $A$ takes $B$ on the motocycle, and at the same time $C$ rides the bicycle. After one hour and a half, $B$ switches to a bicycle and immediately continues the trip to Hanoi, while $A$ returns to pick up $C$. Upon meeting, $C$ continues the travel on the motocycle to Hanoi with $A$. Finally, all three students arrive in Hanoi at the same time. Suppose that the average speed of the motocycle is $50$ km per hour and of the both bicycles are $10$ km per hour. Find the distance from the starting point to Hanoi.
2005 Czech-Polish-Slovak Match, 3
Find all integers $n \ge 3$ for which the polynomial
\[W(x) = x^n - 3x^{n-1} + 2x^{n-2} + 6\]
can be written as a product of two non-constant polynomials with integer coefficients.
2011 Princeton University Math Competition, A8
Let $1,\alpha_1,\alpha_2,...,\alpha_{10}$ be the roots of the polynomial $x^{11}-1$. It is a fact that there exists a unique polynomial of the form $f(x) = x^{10}+c_9x^9+ \dots + c_1x$ such that each $c_i$ is an integer, $f(0) = f(1) = 0$, and for any $1 \leq i \leq 10$ we have $(f(\alpha_i))^2 = -11$. Find $\left|c_1+2c_2c_9+3c_3c_8+4c_4c_7+5c_5c_6\right|$.
2023 Switzerland Team Selection Test, 7
Find all monic polynomials $P(x)=x^{2023}+a_{2022}x^{2022}+\ldots+a_1x+a_0$ with real coefficients such that $a_{2022}=0$, $P(1)=1$ and all roots of $P$ are real and less than $1$.
MMPC Part II 1958 - 95, 1962
[b]p1.[/b] Consider this statement: An equilateral polygon circumscribed about a circle is also equiangular.
Decide whether this statement is a true or false proposition in euclidean geometry.
If it is true, prove it; if false, produce a counterexample.
[b]p2.[/b] Show that the fraction $\frac{x^2-3x+1}{x-3}$ has no value between $1$ and $5$, for any real value of $x$.
[b]p3.[/b] A man walked a total of $5$ hours, first along a level road and then up a hill, after which he turned around and walked back to his starting point along the same route. He walks $4$ miles per hour on the level, three miles per hour uphill, and $r$ miles per hour downhill. For what values of $r$ will this information uniquely determine his total walking distance?
[b]p4.[/b] A point $P$ is so located in the interior of a rectangle that the distance of $P$ from one comer is $5$ yards, from the opposite comer is $14$ yards, and from a third comer is $10$ yards. What is the distance from $P$ to the fourth comer?
[b]p5.[/b] Each small square in the $5$ by $5$ checkerboard shown has in it an integer according to the following rules: $\begin{tabular}{|l|l|l|l|l|}
\hline
& & & & \\ \hline
& & & & \\ \hline
& & & & \\ \hline
& & & & \\ \hline
& & & & \\ \hline \end{tabular}$
i. Each row consists of the integers $1, 2, 3, 4, 5$ in some order.
ii. Тhе order of the integers down the first column has the same as the order of the integers, from left to right, across the first row and similarly fог any other column and the corresponding row.
Prove that the diagonal squares running from the upper left to the lower right contain the numbers $1, 2, 3, 4, 5$ in some order.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2021 JHMT HS, 8
For complex number constant $c$, and real number constants $p$ and $q$, there exist three distinct complex values of $x$ that satisfy $x^3 + cx + p(1 + qi) = 0$. Suppose $c$, $p$, and $q$ were chosen so that all three complex roots $x$ satisfy $\tfrac{5}{6} \leq \tfrac{\mathrm{Im}(x)}{\mathrm{Re}(x)} \leq \tfrac{6}{5}$, where $\mathrm{Im}(x)$ and $\mathrm{Re}(x)$ are the imaginary and real part of $x$, respectively. The largest possible value of $|q|$ can be expressed as a common fraction $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
2007 Germany Team Selection Test, 2
Determine the sum of absolute values for the complex roots of $ 20 x^8 \plus{} 7i x^7 \minus{}7ix \plus{} 20.$
2005 District Olympiad, 1
a) Prove that if $x,y>0$ then
\[ \frac x{y^2} + \frac y{x^2} \geq \frac 1x + \frac 1y. \]
b) Prove that if $a,b,c$ are positive real numbers, then
\[ \frac {a+b}{c^2} + \frac {b+c}{a^2} + \frac {c+a}{b^2} \geq 2 \left( \frac 1a + \frac 1b + \frac 1c \right). \]
1990 Tournament Of Towns, (271) 5
The numerical sequence $\{x_n\}$ satisfies the condition $$x_{n+1}=|x_n|-x_{n-1}$$ for all $n > 1$. Prove that the sequence is periodic with period $9$, i.e. for any $n > 1$ we have $x_n = x_{n+9}$.
(M Kontsevich, Moscow)
2002 District Olympiad, 1
Let $x, y, z$ be positive real numbers such that $xyz(x+y+z) = 1$.
Show that the following equality holds: $$\sqrt{\left( x^2+\frac{1}{y^2}\right)\left( y^2+\frac{1}{z^2}\right)\left( z^2+\frac{1}{x^2}\right)}=(x+y)(y+z)(z+x)$$
Find some numbers $x ,y ,z$ which satisfy the given property.
1989 Romania Team Selection Test, 1
Let $F$ be the set of all functions $f : N \to N$ which satisfy $f(f(x))-2 f(x)+x = 0$ for all $x \in N$.
Determine the set $A =\{ f(1989) | f \in F\}$.