This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1999 IMO Shortlist, 1

Let $n \geq 1$ be an integer. A [b]path[/b] from $(0,0)$ to $(n,n)$ in the $xy$ plane is a chain of consecutive unit moves either to the right (move denoted by $E$) or upwards (move denoted by $N$), all the moves being made inside the half-plane $x \geq y$. A [b]step[/b] in a path is the occurence of two consecutive moves of the form $EN$. Show that the number of paths from $(0,0)$ to $(n,n)$ that contain exactly $s$ steps $(n \geq s \geq 1)$ is \[\frac{1}{s} \binom{n-1}{s-1} \binom{n}{s-1}.\]

2017 Kazakhstan National Olympiad, 3

Tags: algebra , sequence
$\{a_n\}$ is an infinite, strictly increasing sequence of positive integers and $a_{a_n}\leq a_n+a_{n+3}$ for all $n\geq 1$. Prove that, there are infinitely many triples $(k,l,m)$ of positive integers such that $k<l<m$ and $a_k+a_m=2a_l$

2002 Chile National Olympiad, 4

Tags: algebra
All naturals from $1$ to $2002$ are placed in a row. Can the signs: $+$ and $-$ be placed between each consecutive pair of them so that the corresponding algebraic sum is $0$?

2024 Turkey Olympic Revenge, 6

Let $n$ be a positive integer. On a number line, Azer is at point $0$ in his car which have fuel capacity of $2^n$ units and is initially full. At each positive integer $m$, there is a gas station. Azer only moves to the right with constant speed and doesn't stop anywhere except the gas stations. Each time his car moves to the right by some amount, its fuel decreases by the same amount. Azer may choose to stop at a gas station or pass it. There are thieves at some gas stations. (A station may have multiple thieves) If Azer stops at a station which have $k\ge 0$ thieves while its car have fuel capacity $d$, his cars new fuel capacity becomes $\frac{d}{2^k}$. After that, Azer fulls his cars tank and leaves the station. Find the minimum number of thieves needed to guarantee that Azer will eventually run out of fuel. Proposed by[i] Mehmet Can Baştemir[/i] and [i]Deniz Can Karaçelebi[/i]

2018 USA TSTST, 1

As usual, let ${\mathbb Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : {\mathbb Z}[x] \to {\mathbb Z}$ such that for any polynomials $p,q \in {\mathbb Z}[x]$, [list] [*]$\theta(p+1) = \theta(p)+1$, and [*]if $\theta(p) \neq 0$ then $\theta(p)$ divides $\theta(p \cdot q)$. [/list] [i]Evan Chen and Yang Liu[/i]

1998 Bulgaria National Olympiad, 2

The polynomials $P_n(x,y), n=1,2,... $ are defined by \[P_1(x,y)=1, P_{n+1}(x,y)=(x+y-1)(y+1)P_n(x,y+2)+(y-y^2)P_n(x,y)\] Prove that $P_{n}(x,y)=P_{n}(y,x)$ for all $x,y \in \mathbb{R}$ and $n $.

2024 Mathematical Talent Reward Programme, 1

Tags: algebra
Hari the milkman delivers milk to his customers everyday by travelling on his cycle. Each litre of milk costs him Rs. $20$, and he sells it at Rs. $24$. One day while riding his cycle with $20$L, Hari trips and loses $5$L of it, and he decides to mix some water with the rest of the milk. His customers can detect if the milk is more than $10$% impure ($1$L water in $10$L misture). Given that he doesn't wish to make his customers angry, what is his maximum profit for the day? $(A)$ Rs $12$ profit $(B)$ Rs $24$ profit $(C)$ No profit $(D)$ Rs $12$ loss

1994 Denmark MO - Mohr Contest, 3

The third-degree polynomial $P(x)=x^3+2x^2-3x-5$ has the three roots $a$, $b$ and $c$. State a third degree polynomial with roots $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$.

2004 Alexandru Myller, 4

Let be a natural number $ a\ge 2. $ [b]a)[/b] Show that there is no infinite sequence $ \left( k_n \right)_{n\ge 1} $ of pairwise distinct natural numbers greater than $ 1 $ having the property that the sequence $ \left( a^{1/k_n} \right)_{n\ge 1} $ is a geometric progression. [b]b)[/b] Show that there are finite sequences $ \left( l_i \right)_i, $ of any length, of pairwise distinct natural numbers greater than $ 1 $ with the property that $ \left( a^{1/l_i} \right)_{i} $ is a geometric progression. [i]Bogdan Enescu[/i]

1994 Taiwan National Olympiad, 5

Tags: function , vector , algebra
Given $X=\{0,a,b,c\}$, let $M(X)=\{f|f: X\to X\}$ denote the set of all functions from $X$ into itself. An addition table on $X$ is given us follows: $+$ $0$ $a$ $b$ $c$ $0$ $0$ $a$ $b$ $c$ $a$ $a$ $0$ $c$ $b$ $b$ $b$ $c$ $0$ $a$ $c$ $c$ $b$ $a$ $0$ a)If $S=\{f\in M(X)|f(x+y+x)=f(x)+f(y)+f(x)\forall x,y\in X\}$, find $|S|$. b)If $I=\{f\in M(X)|f(x+x)=f(x)+f(x)\forall x\in X\}$, find $|I|$.

2000 Romania National Olympiad, 2a

Tags: algebra
Knowing that $1 < y < 2$ and $x - y + 1 = 0,$ calculate the value of the expression: $$E = \sqrt{4x^2 +4y-3} + 2\sqrt{y^2 - 6x - 2y +10}.$$

2020 Princeton University Math Competition, 15

Suppose that f is a function $f : R_{\ge 0} \to R$ so that for all $x, y \in R_{\ge 0}$ (nonnegative reals) we have that $$f(x)+f(y) = f(x+y+xy)+f(x)f(y).$$ Given that $f\left(\frac{3}{5} \right) = \frac12$ and$ f(1) = 3$, determine $$\lfloor \log_2 (-f(10^{2021} - 1)) \rfloor.$$

2011 Singapore Senior Math Olympiad, 3

Find all positive integers $n$ such that \[\cos\frac{\pi}{n}\cos\frac{2\pi}{n}\cos\frac{3\pi}{n}=\frac{1}{n+1}\]

2015 Germany Team Selection Test, 1

Find the least positive integer $n$, such that there is a polynomial \[ P(x) = a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_1x+a_0 \] with real coefficients that satisfies both of the following properties: - For $i=0,1,\dots,2n$ it is $2014 \leq a_i \leq 2015$. - There is a real number $\xi$ with $P(\xi)=0$.

2018 Abels Math Contest (Norwegian MO) Final, 4

Find all polynomials $P$ such that $P(x) + \binom{2018}{2}P(x+2)+...+\binom{2018}{2106}P(x+2016)+P(x+2018)=$ $=\binom{2018}{1}P(x+1)+\binom{2018}{3}P(x+3)+...+\binom{2018}{2105}P(x+2015)+\binom{2018}{2107}P(x+2017)$ for all real numbers $x$.

2024 Kyiv City MO Round 2, Problem 1

Prove that for any real numbers $x, y, z$ at least one of numbers $x^2 + y + \frac{1}{4}, y^2 + z + \frac{1}{4}, z^2 + x + \frac{1}{4}$ is nonnegative. [i]Proposed by Oleksii Masalitin[/i]

2019 India PRMO, 23

Let $t$ be the area of a regular pentagon with each side equal to $1$. Let $P(x)=0$ be the polynomial equation with least degree, having integer coefficients, satisfied by $x=t$ and the $\gcd$ of all the coefficients equal to $1$. If $M$ is the sum of the absolute values of the coefficients of $P(x)$, What is the integer closest to $\sqrt{M}$ ? ($\sin 18^{\circ}=(\sqrt{5}-1)/2$)

Kvant 2023, M2754

Given are reals $a, b$. Prove that at least one of the equations $x^4-2b^3x+a^4=0$ and $x^4-2a^3x+b^4=0$ has a real root. Proposed by N. Agakhanov

2010 IMAC Arhimede, 2

Find all functions $ f: \mathbb{R}\to\mathbb{R}$ such that we have $f(x + y) = f(x) + f(y) + f(xy)$ for all $ x,y\in \mathbb{R}$

1910 Eotvos Mathematical Competition, 1

If $a, b, c$ are real numbers such that $$a^2 + b^2 + c^2 = 1$$ prove the inequalities $$- \frac12 \le ab + bc + ca \le 1$$

2023 Thailand Mathematical Olympiad, 10

To celebrate the 20th Thailand Mathematical Olympiad (TMO), Ratchasima Witthayalai School put up flags around the Thao Suranari Monument so that [list=i] [*] Each flag is painted in exactly one color, and at least $2$ distinct colors are used. [*] The number of flags are odd. [*] Every flags are on a regular polygon such that each vertex has one flag. [*] Every flags with the same color are on a regular polygon. [/list] Prove that there are at least $3$ colors with the same amount of flags.

1935 Moscow Mathematical Olympiad, 017

Solve the system $\begin{cases} x^3 - y^3 = 26 \\ x^2y - xy^2 = 6 \end{cases}$ in $C$ [hide=other version]solved below Solve the system $\begin{cases} x^3 - y^3 = 2b \\ x^2y - xy^2 = b \end{cases}$[/hide]

2014 Contests, 3

$N$ in natural. There are natural numbers from $N^3$ to $N^3+N$ on the board. $a$ numbers was colored in red, $b$ numbers was colored in blue. Sum of red numbers in divisible by sum of blue numbers. Prove, that $b|a$

1986 IMO Shortlist, 2

Let $f(x) = x^n$ where $n$ is a fixed positive integer and $x =1, 2, \cdots .$ Is the decimal expansion $a = 0.f (1)f(2)f(3) . . .$ rational for any value of $n$ ? The decimal expansion of a is defined as follows: If $f(x) = d_1(x)d_2(x) \cdots d_{r(x)}(x)$ is the decimal expansion of $f(x)$, then $a = 0.1d_1(2)d_2(2) \cdots d_{r(2)}(2)d_1(3) . . . d_{r(3)}(3)d_1(4) \cdots .$

1996 IMO Shortlist, 1

Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \]