This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2003 National Olympiad First Round, 10

Which of the followings is congruent (in $\bmod{25}$) to the sum in of integers $0\leq x < 25$ such that $x^3+3x^2-2x+4 \equiv 0 \pmod{25}$? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 17 \qquad\textbf{(D)}\ 22 \qquad\textbf{(E)}\ \text{None of the preceding} $

1995 Baltic Way, 9

Prove that \[\frac{1995}{2}-\frac{1994}{3}+\frac{1993}{4}-\ldots -\frac{2}{1995}+\frac{1}{1996}=\frac{1}{999}+\frac{3}{1000}+\ldots +\frac{1995}{1996}\]

2015 Dutch Mathematical Olympiad, 5

Given are (not necessarily positive) real numbers $a, b$, and $c$ for which $|a - b| \ge |c| , |b - c| \ge |a|$ and $|c - a| \ge |b|$ . Prove that one of the numbers $a, b$, and $c$ is the sum of the other two.

2010 Albania Team Selection Test, 4

With $\sigma (n)$ we denote the sum of natural divisors of the natural number $n$. Prove that, if $n$ is the product of different prime numbers of the form $2^k-1$ for $k \in \mathbb{N}$($Mersenne's$ prime numbers) , than $\sigma (n)=2^m$, for some $m \in \mathbb{N}$. Is the inverse statement true?

2010 Iran MO (2nd Round), 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

2016 Auckland Mathematical Olympiad, 4

If $m, n$, and $p$ are three different natural numbers, each between $2$ and $9$, what then are all the possible integer value(s) of the expression $\frac{m+n+p}{m+n}$?

Kettering MO, 2017

[b]p1.[/b] An evil galactic empire is attacking the planet Naboo with numerous automatic drones. The fleet defending the planet consists of $101$ ships. By the decision of the commander of the fleet, some of these ships will be used as destroyers equipped with one rocket each or as rocket carriers that will supply destroyers with rockets. Destroyers can shoot rockets so that every rocket destroys one drone. During the attack each carrier will have enough time to provide each destroyer with one rocket but not more. How many destroyers and how many carriers should the commander assign to destroy the maximal number of drones and what is the maximal number of drones that the fleet can destroy? [b]p2.[/b] Solve the inequality: $\sqrt{x^2-3x+2} \le \sqrt{x+7}$ [b]p3.[/b] Find all positive real numbers $x$ and $y$ that satisfy the following system of equations: $$x^y = y^{x-y}$$ $$x^x = y^{12y}$$ [b]p4.[/b] A convex quadrilateral $ABCD$ with sides $AB = 2$, $BC = 8$, $CD = 6$, and $DA = 7$ is divided by a diagonal $AC$ into two triangles. A circle is inscribed in each of the obtained two triangles. These circles touch the diagonal at points $E$ and $F$. Find the distance between the points $E$ and $F$. [b]p5.[/b] Find all positive integer solutions $n$ and $k$ of the following equation: $$\underbrace{11... 1}_{n} \underbrace{00... 0}_{2n+3} + \underbrace{77...7}_{n+1} \underbrace{00...0}_{n+1}+\underbrace{11...1}_{n+2} = 3k^3.$$ [b]p6.[/b] The Royal Council of the planet Naboo consists of $12$ members. Some of these members mutually dislike each other. However, each member of the Council dislikes less than half of the members. The Council holds meetings around the round table. Queen Amidala knows about the relationship between the members so she tries to arrange their seats so that the members that dislike each other are not seated next to each other. But she does not know whether it is possible. Can you help the Queen in arranging the seats? Justify your answer. PS. You should use hide for answers.

2005 Spain Mathematical Olympiad, 2

Is it possible to color points in the Cartesian Plane $(x,y)$ with integer coordinates with three colors, such that each color appears infinitely many times on infinitely many lines parallel to the $x$-axis and that any three points, each of a different color, are not in a line? Justify your answer.

2017 Saudi Arabia JBMO TST, 1

Let $a,b,c>0$ and $a^2+b^2+c^2=3$ . Prove that $$ \frac{a(a-b^2)}{a+b^2}+\frac{b(b-c^2)}{b+c^2}+\frac{c(c-a^2)}{c+a^2}\ge 0.$$

2023 Regional Competition For Advanced Students, 1

Let $a$, $b$ and $c$ be real numbers with $0 \le a, b, c \le 2$. Prove that $$(a - b)(b - c)(a- c) \le 2.$$ When does equality hold? [i](Karl Czakler)[/i]

2014 Indonesia MO Shortlist, A5

Determine the largest natural number $m$ such that for each non negative real numbers $a_1 \ge a_2 \ge ... \ge a_{2014} \ge 0$ , it is true that $$\frac{a_1+a_2+...+a_m}{m}\ge \sqrt{\frac{a_1^2+a_2^2+...+a_{2014}^2}{2014}}$$

2007 Singapore Senior Math Olympiad, 1

Tags: algebra
It is given that $x, y, z$ are $3$ real numbers such that $\frac{x-y}{2+xy}+\frac{y-z}{2+yz}+\frac{z-x}{2+zx}=0$ Is it true that at least two of the three numbers must be equal? Justify your answer.

2013 Romania National Olympiad, 1

Solve the following equation ${{2}^{{{\sin }^{4}}x-{{\cos }^{2}}x}}-{{2}^{{{\cos }^{4}}x-{{\sin }^{2}}x}}=\cos 2x$

1973 Chisinau City MO, 64

Prove that in the decimal notation of the number $(5+\sqrt{26})^{-1973}$ immediately after the decimal point there are at least $1973$ zeros.

1992 IMO Longlists, 35

Let $ f(x)$ be a polynomial with rational coefficients and $ \alpha$ be a real number such that \[ \alpha^3 \minus{} \alpha \equal{} [f(\alpha)]^3 \minus{} f(\alpha) \equal{} 33^{1992}.\] Prove that for each $ n \geq 1,$ \[ \left [ f^{n}(\alpha) \right]^3 \minus{} f^{n}(\alpha) \equal{} 33^{1992},\] where $ f^{n}(x) \equal{} f(f(\cdots f(x))),$ and $ n$ is a positive integer.

IV Soros Olympiad 1997 - 98 (Russia), 11.8

Sum of all roots of the equation $$cos^{100} x + a_1 cos^{99} x + a_2cos^{98} x +... + a_99 cos x+ a_{100} = 0$$, in interval $\left[\pi, \frac{3\pi}{2} \right]$, is equal to $21\pi$, and the sum of all roots of the equation $$sin^{100} x + a_1 sin^{99} x + a_2sin ^{98} x +... + a_99sin x+ a_{100} = 0$$, in the same interval, is equal to $24\pi $. How many roots does the first equation have on the segment $\left[ \frac{\pi}{2}, \pi\right]$?

2017 NMTC Junior, 6

Tags: algebra
If $a,b,c,d$ are positive reals such that $a^2+b^2=c^2+d^2$ and $a^2+d^2-ad=b^2+c^2+bc$, find the value of $\frac{ab+cd}{ad+bc}$

2016 Danube Mathematical Olympiad, 1

Tags: algebra
Let $S=x_1x_2+x_3x_4+\cdots+x_{2015}x_{2016},$ where $x_1,x_2,\ldots,x_{2016}\in\{\sqrt{3}-\sqrt{2},\sqrt{3}+\sqrt{2}\}.$ Can $S$ be equal to $2016?$ [i]Cristian Lazăr[/i]

1998 North Macedonia National Olympiad, 2

Prove that the numbers $1,2,...,1998$ cannot be separated into three classes whose sums of elements are divisible by $2000,3999$, and $5998$, respectively.

2012 Purple Comet Problems, 29

Let $A=\{1, 3, 5, 7, 9\}$ and $B=\{2, 4, 6, 8, 10\}$. Let $f$ be a randomly chosen function from the set $A\cup B$ into itself. There are relatively prime positive integers $m$ and $n$ such that $\frac{m}{n}$ is the probablity that $f$ is a one-to-one function on $A\cup B$ given that it maps $A$ one-to-one into $A\cup B$ and it maps $B$ one-to-one into $A\cup B$. Find $m+n$.

2015 Latvia Baltic Way TST, 8

Given a fixed rational number $q$. Let's call a number $x$ [i]charismatic [/i] if we can find a natural number $n$ and integers $a_1, a_2,.., a_n$ such that $$x = (q + 1)^{a_1} \cdot (q + 2)^{a_2} \cdot ... \cdot(q + n)^{a_n} .$$ i) Prove that one can find a $q$ such that all positive rational numbers are charismatic. ii) Is it true that for all $q$, if the number $x$ is charismatic, then $x + 1$ is also charismatic?

2012 Indonesia TST, 1

The sequence $a_i$ is defined as $a_1 = 2, a_2 = 3$, and $a_{n+1} = 2a_{n-1}$ or $a_{n+1} = 3a_n - 2a_{n-1}$ for all integers $n \ge 2$. Prove that no term in $a_i$ is in the range $[1612, 2012]$.

2012 India PRMO, 12

Tags: algebra
If $\frac{1}{\sqrt{2011+\sqrt{2011^2-1}}}=\sqrt{m}-\sqrt{n}$, where $m$ and $n$ are positive integers, what is the value of $m+n$?

2011 Junior Balkan Team Selection Tests - Romania, 4

Tags: algebra , rational , sum
Let $k$ and $n$ be integer numbers with $2 \le k \le n - 1$. Consider a set $A$ of $n$ real numbers such that the sum of any $k$ distinct elements of $A$ is a rational number. Prove that all elements of the set $A$ are rational numbers.

2018 USA Team Selection Test, 3

Alice and Bob play a game. First, Alice secretly picks a finite set $S$ of lattice points in the Cartesian plane. Then, for every line $\ell$ in the plane which is horizontal, vertical, or has slope $+1$ or $-1$, she tells Bob the number of points of $S$ that lie on $\ell$. Bob wins if he can determine the set $S$. Prove that if Alice picks $S$ to be of the form \[S = \{(x, y) \in \mathbb{Z}^2 \mid m \le x^2 + y^2 \le n\}\] for some positive integers $m$ and $n$, then Bob can win. (Bob does not know in advance that $S$ is of this form.) [i]Proposed by Mark Sellke[/i]