This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2007 South africa National Olympiad, 2

Consider the equation $ x^4 \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} 2007$, where $ a,b,c$ are real numbers. Determine the largest value of $ b$ for which this equation has exactly three distinct solutions, all of which are integers.

2007 Iran Team Selection Test, 1

Does there exist a a sequence $a_{0},a_{1},a_{2},\dots$ in $\mathbb N$, such that for each $i\neq j, (a_{i},a_{j})=1$, and for each $n$, the polynomial $\sum_{i=0}^{n}a_{i}x^{i}$ is irreducible in $\mathbb Z[x]$? [i]By Omid Hatami[/i]

1986 Tournament Of Towns, (116) 4

The function $F$ , defined on the entire real line, satisfies the following relation (for all $x$ ) : $F(x +1 )F(x) + F(x + 1 ) + 1 = 0$ . Prove that $F$ is not continuous. (A.I. Plotkin, Leningrad)

2011 Germany Team Selection Test, 3

We call a function $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ [i]good[/i] if for all $x,y \in \mathbb{Q}^+$ we have: $$f(x)+f(y)\geq 4f(x+y).$$ a) Prove that for all good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x,y,z \in \mathbb{Q}^+$ $$f(x)+f(y)+f(z) \geq 8f(x+y+z)$$ b) Does there exists a good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x,y,z \in \mathbb{Q}^+$ such that $$f(x)+f(y)+f(z) < 9f(x+y+z) ?$$

1999 May Olympiad, 5

Ana, Beatriz, Carlos, Diego and Emilia play a chess tournament. Each player faces each of the other four only once. Each player gets $2$ points if he wins the match, $1$ point if he draws and $0$ point if he loses. At the end of the tournament, it turns out that the scores of the $5$ players are all different. Find the maximum number of ties there could be in the tournament and justify why there could not be a higher number of ties.

2025 Kosovo National Mathematical Olympiad`, P2

Let $x$ and $y$ be real numbers where at least one of them is bigger than $2$ and $xy+4 > 2(x+y)$ holds. Show that $xy>x+y$.

2023 Euler Olympiad, Round 2, 1

Consider a sequence of 100 positive integers. Each member of the sequence, starting from the second one, is derived by either multiplying the previous number by 2 or dividing it by 16. Is it possible for the sum of these 100 numbers to be equal to $2^{2023}$? [i]Proposed by Nika Glunchadze, Georgia[/i]

2023 Azerbaijan National Mathematical Olympiad, 3

Tags: algebra
Find all the real roots of the system of equations: $$ \begin{cases} x^3+y^3=19 \\ x^2+y^2+5x+5y+xy=12 \end{cases} $$

2010 Kosovo National Mathematical Olympiad, 1

Tags: algebra
Find the graph of the function $y=|2^{|x|}-1|$.

2015 Korea Junior Math Olympiad, 6

Tags: function , algebra
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that (i): For different reals $x,y$, $f(x) \not= f(y)$. (ii): For all reals $x,y$, $f(x+f(f(-y)))=f(x)+f(f(y))$

2014 NIMO Problems, 6

Let $N=10^6$. For which integer $a$ with $0 \leq a \leq N-1$ is the value of \[\binom{N}{a+1}-\binom{N}{a}\] maximized? [i]Proposed by Lewis Chen[/i]

2013 BAMO, 5

Let $F_1,F_2,F_3,...$ be the [i]Fibonacci sequence[/i], the sequence of positive integers with $F_1 =F_2 =1$ and $F_{n+2}=F_{n+1}+F_n$ for all $n \ge 1$. A [i]Fibonacci number[/i] is by definition a number appearing in this sequence. Let $P_1,P_2,P_3,...$ be the sequence consisting of all the integers that are products of two Fibonacci numbers (not necessarily distinct) in increasing order. The first few terms are $1,2,3,4,5,6,8,9,10,13,...$ since, for example $3 = 1 \cdot 3, 4 = 2 \cdot 2$, and $10 = 2 \cdot 5$. Consider the sequence $D_n$ of [i]successive [/i] differences of the $P_n$ sequence, where $D_n = P_{n+1}-P_n$ for $n \ge 1$. The first few terms of D_n are $1,1,1,1,1,2,1,1,3, ...$ . Prove that every number in $D_n$ is a [i]Fibonacci number[/i].

2005 Taiwan National Olympiad, 2

Find all reals $x$ satisfying $0 \le x \le 5$ and $\lfloor x^2-2x \rfloor = \lfloor x \rfloor ^2 - 2 \lfloor x \rfloor$.

2009 Puerto Rico Team Selection Test, 5

The [i]weird [/i] mean of two numbers $ a$ and $ b$ is defined as $ \sqrt {\frac {2a^2 + 3b^2}{5}}$. $ 2009$ positive integers are placed around a circle such that each number is equal to the the weird mean of the two numbers beside it. Show that these $ 2009$ numbers must be equal.

2011 Bogdan Stan, 1

Consider the multiplicative group $ \left\{ \left.A_k:=\left(\begin{matrix} 2^k& 2^k\\2^k& 2^k\end{matrix}\right)\right| k\in\mathbb{Z} \right\} . $ [b]a)[/b] Prove that $A_xA_y=A_{x+y+1} , $ for all integers $ x,y. $ [b]b)[/b] Show that, for all integers $ t, $ the multiplicative group $ \left\{ A_{jt-1}|j\in\mathbb{Z} \right\} $ is a subgroup of $ G. $ [b]c)[/b] Determine the linear integer polynomials $ P $ for which it exists an isomorphism $ \left( G,\cdot \right)\stackrel{\eta}{\cong}\left( \mathbb{Z} ,+ \right) $ such that $ \eta\left( A_k \right) =P(k). $

1995 Austrian-Polish Competition, 3

Let $P(x) = x^4 + x^3 + x^2 + x + 1$. Show that there exist two non-constant polynomials $Q(y)$ and $R(y)$ with integer coefficients such that for all $Q(y) \cdot R(y)= P(5y^2)$ for all $y$ .

2006 Irish Math Olympiad, 3

let x,y are positive and $ \in R$ that : $ x\plus{}2y\equal{}1$.prove that : \[ \frac{1}{x}\plus{}\frac{2}{y} \geq \frac{25}{1\plus{}48xy^2}\]

DMM Individual Rounds, 2021

[b]p1.[/b] There are $4$ mirrors facing the inside of a $5\times 7$ rectangle as shown in the figure. A ray of light comes into the inside of a rectangle through $A$ with an angle of $45^o$. When it hits the sides of the rectangle, it bounces off at the same angle, as shown in the diagram. How many times will the ray of light bounce before it reaches any one of the corners $A$, $B$, $C$, $D$? A bounce is a time when the ray hit a mirror and reflects off it. [img]https://cdn.artofproblemsolving.com/attachments/1/e/d6ea83941cdb4b2dab187d09a0c45782af1691.png[/img] [b]p2.[/b] Jerry cuts $4$ unit squares out from the corners of a $45\times 45$ square and folds it into a $43\times 43\times 1$ tray. He then divides the bottom of the tray into a $43\times 43$ grid and drops a unit cube, which lands in precisely one of the squares on the grid with uniform probability. Suppose that the average number of sides of the cube that are in contact with the tray is given by $\frac{m}{n}$ where $m, n$ are positive integers that are relatively prime. Find $m + n$. [b]p3.[/b] Compute $2021^4 - 4 \cdot 2023^4 + 6 \cdot 2025^4 - 4 \cdot 2027^4 + 2029^4$. [b]p4.[/b] Find the number of distinct subsets $S \subseteq \{1, 2,..., 20\}$, such that the sum of elements in $S$ leaves a remainder of $10$ when divided by $32$. [b]p5.[/b] Some $k$ consecutive integers have the sum $45$. What is the maximum value of $k$? [b]p6.[/b] Jerry picks $4$ distinct diagonals from a regular nonagon (a regular polygon with $9$-sides). A diagonal is a segment connecting two vertices of the nonagon that is not a side. Let the probability that no two of these diagonals are parallel be $\frac{m}{n}$ where $m, n$ are positive integers that are relatively prime. Find $m + n$. [b]p7.[/b] The Olympic logo is made of $5$ circles of radius $1$, as shown in the figure [img]https://cdn.artofproblemsolving.com/attachments/1/7/9dafe6b72aa8471234afbaf4c51e3e97c49ee5.png[/img] Suppose that the total area covered by these $5$ circles is $a+b\pi$ where $a, b$ are rational numbers. Find $10a + 20b$. [b]p8.[/b] Let $P(x)$ be an integer polynomial (polynomial with integer coefficients) with $P(-5) = 3$ and $P(5) = 23$. Find the minimum possible value of $|P(-2) + P(2)|$. [b]p9. [/b]There exists a unique tuple of rational numbers $(a, b, c)$ such that the equation $$a \log 10 + b \log 12 + c \log 90 = \log 2025.$$ What is the value of $a + b + c$? [b]p10.[/b] Each grid of a board $7\times 7$ is filled with a natural number smaller than $7$ such that the number in the grid at the $i$th row and $j$th column is congruent to $i + j$ modulo $7$. Now, we can choose any two different columns or two different rows, and swap them. How many different boards can we obtain from a finite number of swaps? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

CVM 2020, Problem 2

Tags: algebra
Find all $(x,y,z)\in\mathbb R^3$ such that $$x+y+z=xy+yz+zx=3$$ [i]Proposed by Ezra Guerrero, Francisco Morazan[/i]

2002 Czech and Slovak Olympiad III A, 4

Find all pairs of real numbers $a, b$ for which the equation in the domain of the real numbers \[\frac{ax^2-24x+b}{x^2-1}=x\] has two solutions and the sum of them equals $12$.

2021 Thailand TST, 3

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

1988 Irish Math Olympiad, 8

Tags: algebra
Let $x_1,x_2,x_3,\dots$ be sequence of nonzero real numbers satisfying $$x_n=\frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}, \quad \quad n=3,4,5,\dots$$ Establish necessary and sufficient conditions on $x_1,x_2$ for $x_n$ to be an integer for infinitely many values of $n$.

2009 ISI B.Stat Entrance Exam, 4

A sequence is called an [i]arithmetic progression of the first order[/i] if the differences of the successive terms are constant. It is called an [i]arithmetic progression of the second order[/i] if the differences of the successive terms form an arithmetic progression of the first order. In general, for $k\geq 2$, a sequence is called an [i]arithmetic progression of the $k$-th order[/i] if the differences of the successive terms form an arithmetic progression of the $(k-1)$-th order. The numbers \[4,6,13,27,50,84\] are the first six terms of an arithmetic progression of some order. What is its least possible order? Find a formula for the $n$-th term of this progression.

2002 AMC 10, 14

Both roots of the quadratic equation $ x^2 \minus{} 63x \plus{} k \equal{} 0$ are prime numbers. The number of possible values of $ k$ is $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \textbf{more than four}$

2005 France Team Selection Test, 6

Let $P$ be a polynom of degree $n \geq 5$ with integer coefficients given by $P(x)=a_{n}x^n+a_{n-1}x^{n-1}+\cdots+a_0 \quad$ with $a_i \in \mathbb{Z}$, $a_n \neq 0$. Suppose that $P$ has $n$ different integer roots (elements of $\mathbb{Z}$) : $0,\alpha_2,\ldots,\alpha_n$. Find all integers $k \in \mathbb{Z}$ such that $P(P(k))=0$.