Found problems: 15925
2022 Malaysia IMONST 2, 6
A football league has $n$ teams. Each team plays one game with every other team. Each win is awarded $2$ points, each tie $1$ point, and each loss $0$ points.
After the league is over, the following statement is true: for every subset $S$ of teams in the league, there is a team (which may or may not be in $S$) such that the total points the team obtained by playing all the teams in $S$ is odd.
Prove that $n$ is even.
2008 Iran MO (3rd Round), 4
=A subset $ S$ of $ \mathbb R^2$ is called an algebraic set if and only if there is a polynomial $ p(x,y)\in\mathbb R[x,y]$ such that
\[ S \equal{} \{(x,y)\in\mathbb R^2|p(x,y) \equal{} 0\}
\]
Are the following subsets of plane an algebraic sets?
1. A square
[img]http://i36.tinypic.com/28uiaep.png[/img]
2. A closed half-circle
[img]http://i37.tinypic.com/155m155.png[/img]
2013 India PRMO, 4
Three points $X, Y,Z$ are on a striaght line such that $XY = 10$ and $XZ = 3$. What is the product of all possible values of $YZ$?
2016 Costa Rica - Final Round, LR3
Consider an arithmetic progression made up of $100$ terms. If the sum of all the terms of the progression is $150$ and the sum of the even terms is $50$, find the sum of the squares of the $100$ terms of the progression.
2012 Harvard-MIT Mathematics Tournament, 10
Suppose that there are $16$ variables $\{a_{i,j}\}_{0\leq i,j\leq 3}$, each of which may be $0$ or $1$. For how many settings of the variables $a_{i,j}$ do there exist positive reals $c_{i,j}$ such that the polynomial \[f(x,y)=\sum_{0\leq i,j\leq 3}a_{i,j}c_{i,j}x^iy^j\] $(x,y\in\mathbb{R})$ is bounded below?
2020 Brazil Team Selection Test, 4
Let $\mathbb{Z}$ denote the set of all integers. Find all polynomials $P(x)$ with integer coefficients that satisfy the following property:
For any infinite sequence $a_1$, $a_2$, $\dotsc$ of integers in which each integer in $\mathbb{Z}$ appears exactly once, there exist indices $i < j$ and an integer $k$ such that $a_i +a_{i+1} +\dotsb +a_j = P(k)$.
2011 Austria Beginners' Competition, 2
Let $p$ and $q$ be real numbers. The quadratic equation $$x^2 + px + q = 0$$
has the real solutions $x_1$ and $x_2$. In addition, the following two conditions apply:
(i) The numbers $x_1$ and $x_2$ differ from each other by exactly $ 1$.
(ii) The numbers $p$ and $q$ differ from each other by exactly $ 1$.
Show that then $p$, $q$, $x_1$ and $x_2$ are integers.
(G. Kirchner, University of Innsbruck)
1987 AMC 12/AHSME, 28
Let $a, b, c, d$ be real numbers. Suppose that all the roots of $z^4+az^3+bz^2+cz+d=0$ are complex numbers lying on a circle in the complex plane centered at $0+0i$ and having radius $1$. The sum of the reciprocals of the roots is necessarily
$ \textbf{(A)}\ a \qquad\textbf{(B)}\ b \qquad\textbf{(C)}\ c \qquad\textbf{(D)}\ -a \qquad\textbf{(E)}\ -b $
2014 Contests, 3
Find all real numbers $p$ for which the equation $x^3+3px^2+(4p-1)x+p=0$ has two real roots with difference $1$.
2016 Korea Winter Program Practice Test, 1
Find all $\{a_n\}_{n\ge 0}$ that satisfies the following conditions.
(1) $a_n\in \mathbb{Z}$
(2) $a_0=0, a_1=1$
(3) For infinitly many $m$, $a_m=m$
(4) For every $n\ge2$, $\{2a_i-a_{i-1} | i=1, 2, 3, \cdots , n\}\equiv \{0, 1, 2, \cdots , n-1\}$ $\mod n$
2015 Chile National Olympiad, 4
Find the number of different numbers of the form $\left\lfloor\frac{i^2}{2015} \right\rfloor$, with $i = 1,2, ..., 2015$.
2022 CMIMC, 2.3 1.1
How many 4-digit numbers have exactly $9$ divisors from the set $\{1,2,3,4,5,6,7,8,9,10\}$?
[i]Proposed by Ethan Gu[/i]
2024 All-Russian Olympiad Regional Round, 10.6
Do there exist distinct reals $x, y, z$, such that $\frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}+\frac{1}{z^2+z+1}=4$?
2009 India IMO Training Camp, 9
Let
$ f(x)\equal{}\sum_{k\equal{}1}^n a_k x^k$ and $ g(x)\equal{}\sum_{k\equal{}1}^n \frac{a_k x^k}{2^k \minus{}1}$ be two polynomials with real coefficients.
Let g(x) have $ 0,2^{n\plus{}1}$ as two of its roots. Prove That $ f(x)$ has a positive root less than $ 2^n$.
1984 IMO Shortlist, 19
The harmonic table is a triangular array:
$1$
$\frac 12 \qquad \frac 12$
$\frac 13 \qquad \frac 16 \qquad \frac 13$
$\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$
Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.
2016 Belarus Team Selection Test, 1
Given real numbers $a,b,c,d$ such that $\sin{a}+b >\sin{c}+d, a+\sin{b}>c+\sin{d}$, prove that $a+b>c+d$
2014 Contests, 2
Let $a_0, a_1, . . . , a_N$ be real numbers satisfying $a_0 = a_N = 0$ and \[a_{i+1} - 2a_i + a_{i-1} = a^2_i\] for $i = 1, 2, . . . , N - 1.$ Prove that $a_i\leq 0$ for $i = 1, 2, . . . , N- 1.$
1999 Bosnia and Herzegovina Team Selection Test, 1
Let $a$, $b$ and $c$ be lengths of sides of triangle $ABC$. Prove that at least one of the equations $$x^2-2bx+2ac=0$$ $$x^2-2cx+2ab=0$$ $$x^2-2ax+2bc=0$$ does not have real solutions
1974 Swedish Mathematical Competition, 4
Find all polynomials $p(x)$ such that $p(x^2) = p(x)^2$ for all $x$. Hence find all polynomials $q(x)$ such that
\[
q\left(x^2 - 2x\right) = q\left(x-2\right)^2
\]
1961 AMC 12/AHSME, 13
The symbol $|a|$ means $a$ is a positive number or zero, and $-a$ if $a$ is a negative number. For all real values of $t$ the expression $\sqrt{t^4+t^2}$ is equal to:
${{ \textbf{(A)}\ t^3 \qquad\textbf{(B)}\ t^2+t \qquad\textbf{(C)}\ |t^2+t| \qquad\textbf{(D)}\ t\sqrt{t^2+1} }\qquad\textbf{(E)}\ |t|\sqrt{1+t^2} } $
2016 Estonia Team Selection Test, 8
Let $x, y$ and $z$ be positive real numbers such that $x + y + z = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ . Prove that $xy + yz + zx \ge 3$.
2021 Science ON all problems, 1
Consider the complex numbers $x,y,z$ such that
$|x|=|y|=|z|=1$. Define the number
$$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$
$\textbf{(a)}$ Prove that $a$ is a real number.
$\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$.
[i] (Stefan Bălăucă & Vlad Robu)[/i]
LMT Guts Rounds, 2018 F
[u]Round 5[/u]
[b]p13.[/b] Express the number $3024_8$ in base $2$.
[b]p14.[/b] $\vartriangle ABC$ has a perimeter of $10$ and has $AB = 3$ and $\angle C$ has a measure of $60^o$. What is the maximum area of the triangle?
[b]p15.[/b] A weighted coin comes up as heads $30\%$ of the time and tails $70\%$ of the time. If I flip the coin $25$ times, howmany tails am I expected to flip?
[u]Round 6[/u]
[b]p16.[/b] A rectangular box with side lengths $7$, $11$, and $13$ is lined with reflective mirrors, and has edges aligned with the coordinate axes. A laser is shot from a corner of the box in the direction of the line $x = y =
z$. Find the distance traveled by the laser before hitting a corner of the box.
[b]p17.[/b] The largest solution to $x^2 + \frac{49}{x^2}= 2018$ can be represented in the form $\sqrt{a}+\sqrt{b}$. Compute $a +b$.
[b]p18.[/b] What is the expected number of black cards between the two jokers of a $54$ card deck?
[u]Round 7[/u]
p19. Compute ${6 \choose 0} \cdot 2^0 + {6 \choose 1} \cdot 2^1+ {6 \choose 2} \cdot 2^2+ ...+ {6 \choose 6} \cdot 2^6$.
[b]p20.[/b] Define a sequence by $a_1 =5$, $a_{n+1} = a_n + 4 * n -1$ for $n\ge 1$. What is the value of $a_{1000}$?
[b]p21.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B = 15^o$ and $\angle C = 30^o$. Let $D$ be the point such that $\vartriangle ADC$ is an isosceles right triangle where $D$ is in the opposite side from $A$ respect to $BC$ and $\angle DAC = 90^o$. Find the $\angle ADB$.
[u]Round 8[/u]
[b]p22.[/b] Say the answer to problem $24$ is $z$. Compute $gcd (z,7z +24).$
[b]p23.[/b] Say the answer to problem $22$ is $x$. If $x$ is $1$, write down $1$ for this question. Otherwise, compute $$\sum^{\infty}_{k=1} \frac{1}{x^k}$$
[b]p24.[/b] Say the answer to problem $23$ is $y$. Compute $$\left \lfloor \frac{y^2 +1}{y} \right \rfloor$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165983p28809209]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166045p28809814]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 CHKMO, 1
Given that $ \{a_n\}$ is a sequence in which all the terms are integers, and $ a_2$ is odd. For any natural number $ n$, $ n(a_{n \plus{} 1} \minus{} a_n \plus{} 3) \equal{} a_{n \plus{} 1} \plus{} a_n \plus{} 3$. Furthermore, $ a_{2009}$ is divisible by $ 2010$. Find the smallest integer $ n > 1$ such that $ a_n$ is divisible by $ 2010$.
P.S.: I saw EVEN instead of ODD. Got only half of the points.
2022 IFYM, Sozopol, 6
For the function $f : Z^2_{\ge0} \to Z_{\ge 0}$ it is known that
$$f(0, j) = f(i, 0) = 1, \,\,\,\,\, \forall i, j \in N_0$$
$$f(i, j) = if (i, j - 1) + jf(i - 1, j),\,\,\,\,\, \forall i, j \in N$$
Prove that for every natural number $n$ the following inequality holds:
$$\sum_{0\le i+j\le n+1} f(i, j) \le 2 \left(\sum^n_{k=0}\frac{1}{k!}\right)\left(\sum^n_{p=1}p!\right)+ 3$$