This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2022 Malaysia IMONST 2, 6

A football league has $n$ teams. Each team plays one game with every other team. Each win is awarded $2$ points, each tie $1$ point, and each loss $0$ points. After the league is over, the following statement is true: for every subset $S$ of teams in the league, there is a team (which may or may not be in $S$) such that the total points the team obtained by playing all the teams in $S$ is odd. Prove that $n$ is even.

2008 Iran MO (3rd Round), 4

=A subset $ S$ of $ \mathbb R^2$ is called an algebraic set if and only if there is a polynomial $ p(x,y)\in\mathbb R[x,y]$ such that \[ S \equal{} \{(x,y)\in\mathbb R^2|p(x,y) \equal{} 0\} \] Are the following subsets of plane an algebraic sets? 1. A square [img]http://i36.tinypic.com/28uiaep.png[/img] 2. A closed half-circle [img]http://i37.tinypic.com/155m155.png[/img]

2013 India PRMO, 4

Tags: algebra , geometry
Three points $X, Y,Z$ are on a striaght line such that $XY = 10$ and $XZ = 3$. What is the product of all possible values of $YZ$?

2016 Costa Rica - Final Round, LR3

Consider an arithmetic progression made up of $100$ terms. If the sum of all the terms of the progression is $150$ and the sum of the even terms is $50$, find the sum of the squares of the $100$ terms of the progression.

2012 Harvard-MIT Mathematics Tournament, 10

Suppose that there are $16$ variables $\{a_{i,j}\}_{0\leq i,j\leq 3}$, each of which may be $0$ or $1$. For how many settings of the variables $a_{i,j}$ do there exist positive reals $c_{i,j}$ such that the polynomial \[f(x,y)=\sum_{0\leq i,j\leq 3}a_{i,j}c_{i,j}x^iy^j\] $(x,y\in\mathbb{R})$ is bounded below?

2020 Brazil Team Selection Test, 4

Let $\mathbb{Z}$ denote the set of all integers. Find all polynomials $P(x)$ with integer coefficients that satisfy the following property: For any infinite sequence $a_1$, $a_2$, $\dotsc$ of integers in which each integer in $\mathbb{Z}$ appears exactly once, there exist indices $i < j$ and an integer $k$ such that $a_i +a_{i+1} +\dotsb +a_j = P(k)$.

2011 Austria Beginners' Competition, 2

Tags: algebra , quadratic
Let $p$ and $q$ be real numbers. The quadratic equation $$x^2 + px + q = 0$$ has the real solutions $x_1$ and $x_2$. In addition, the following two conditions apply: (i) The numbers $x_1$ and $x_2$ differ from each other by exactly $ 1$. (ii) The numbers $p$ and $q$ differ from each other by exactly $ 1$. Show that then $p$, $q$, $x_1$ and $x_2$ are integers. (G. Kirchner, University of Innsbruck)

1987 AMC 12/AHSME, 28

Let $a, b, c, d$ be real numbers. Suppose that all the roots of $z^4+az^3+bz^2+cz+d=0$ are complex numbers lying on a circle in the complex plane centered at $0+0i$ and having radius $1$. The sum of the reciprocals of the roots is necessarily $ \textbf{(A)}\ a \qquad\textbf{(B)}\ b \qquad\textbf{(C)}\ c \qquad\textbf{(D)}\ -a \qquad\textbf{(E)}\ -b $

2014 Contests, 3

Find all real numbers $p$ for which the equation $x^3+3px^2+(4p-1)x+p=0$ has two real roots with difference $1$.

2016 Korea Winter Program Practice Test, 1

Find all $\{a_n\}_{n\ge 0}$ that satisfies the following conditions. (1) $a_n\in \mathbb{Z}$ (2) $a_0=0, a_1=1$ (3) For infinitly many $m$, $a_m=m$ (4) For every $n\ge2$, $\{2a_i-a_{i-1} | i=1, 2, 3, \cdots , n\}\equiv \{0, 1, 2, \cdots , n-1\}$ $\mod n$

2015 Chile National Olympiad, 4

Find the number of different numbers of the form $\left\lfloor\frac{i^2}{2015} \right\rfloor$, with $i = 1,2, ..., 2015$.

2022 CMIMC, 2.3 1.1

How many 4-digit numbers have exactly $9$ divisors from the set $\{1,2,3,4,5,6,7,8,9,10\}$? [i]Proposed by Ethan Gu[/i]

2024 All-Russian Olympiad Regional Round, 10.6

Tags: algebra
Do there exist distinct reals $x, y, z$, such that $\frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}+\frac{1}{z^2+z+1}=4$?

2009 India IMO Training Camp, 9

Let $ f(x)\equal{}\sum_{k\equal{}1}^n a_k x^k$ and $ g(x)\equal{}\sum_{k\equal{}1}^n \frac{a_k x^k}{2^k \minus{}1}$ be two polynomials with real coefficients. Let g(x) have $ 0,2^{n\plus{}1}$ as two of its roots. Prove That $ f(x)$ has a positive root less than $ 2^n$.

1984 IMO Shortlist, 19

The harmonic table is a triangular array: $1$ $\frac 12 \qquad \frac 12$ $\frac 13 \qquad \frac 16 \qquad \frac 13$ $\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$ Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.

2016 Belarus Team Selection Test, 1

Given real numbers $a,b,c,d$ such that $\sin{a}+b >\sin{c}+d, a+\sin{b}>c+\sin{d}$, prove that $a+b>c+d$

2014 Contests, 2

Tags: algebra
Let $a_0, a_1, . . . , a_N$ be real numbers satisfying $a_0 = a_N = 0$ and \[a_{i+1} - 2a_i + a_{i-1} = a^2_i\] for $i = 1, 2, . . . , N - 1.$ Prove that $a_i\leq 0$ for $i = 1, 2, . . . , N- 1.$

1999 Bosnia and Herzegovina Team Selection Test, 1

Let $a$, $b$ and $c$ be lengths of sides of triangle $ABC$. Prove that at least one of the equations $$x^2-2bx+2ac=0$$ $$x^2-2cx+2ab=0$$ $$x^2-2ax+2bc=0$$ does not have real solutions

1974 Swedish Mathematical Competition, 4

Find all polynomials $p(x)$ such that $p(x^2) = p(x)^2$ for all $x$. Hence find all polynomials $q(x)$ such that \[ q\left(x^2 - 2x\right) = q\left(x-2\right)^2 \]

1961 AMC 12/AHSME, 13

Tags: algebra , function , domain
The symbol $|a|$ means $a$ is a positive number or zero, and $-a$ if $a$ is a negative number. For all real values of $t$ the expression $\sqrt{t^4+t^2}$ is equal to: ${{ \textbf{(A)}\ t^3 \qquad\textbf{(B)}\ t^2+t \qquad\textbf{(C)}\ |t^2+t| \qquad\textbf{(D)}\ t\sqrt{t^2+1} }\qquad\textbf{(E)}\ |t|\sqrt{1+t^2} } $

2016 Estonia Team Selection Test, 8

Let $x, y$ and $z$ be positive real numbers such that $x + y + z = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ . Prove that $xy + yz + zx \ge 3$.

2021 Science ON all problems, 1

Consider the complex numbers $x,y,z$ such that $|x|=|y|=|z|=1$. Define the number $$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$ $\textbf{(a)}$ Prove that $a$ is a real number. $\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$. [i] (Stefan Bălăucă & Vlad Robu)[/i]

LMT Guts Rounds, 2018 F

[u]Round 5[/u] [b]p13.[/b] Express the number $3024_8$ in base $2$. [b]p14.[/b] $\vartriangle ABC$ has a perimeter of $10$ and has $AB = 3$ and $\angle C$ has a measure of $60^o$. What is the maximum area of the triangle? [b]p15.[/b] A weighted coin comes up as heads $30\%$ of the time and tails $70\%$ of the time. If I flip the coin $25$ times, howmany tails am I expected to flip? [u]Round 6[/u] [b]p16.[/b] A rectangular box with side lengths $7$, $11$, and $13$ is lined with reflective mirrors, and has edges aligned with the coordinate axes. A laser is shot from a corner of the box in the direction of the line $x = y = z$. Find the distance traveled by the laser before hitting a corner of the box. [b]p17.[/b] The largest solution to $x^2 + \frac{49}{x^2}= 2018$ can be represented in the form $\sqrt{a}+\sqrt{b}$. Compute $a +b$. [b]p18.[/b] What is the expected number of black cards between the two jokers of a $54$ card deck? [u]Round 7[/u] p19. Compute ${6 \choose 0} \cdot 2^0 + {6 \choose 1} \cdot 2^1+ {6 \choose 2} \cdot 2^2+ ...+ {6 \choose 6} \cdot 2^6$. [b]p20.[/b] Define a sequence by $a_1 =5$, $a_{n+1} = a_n + 4 * n -1$ for $n\ge 1$. What is the value of $a_{1000}$? [b]p21.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B = 15^o$ and $\angle C = 30^o$. Let $D$ be the point such that $\vartriangle ADC$ is an isosceles right triangle where $D$ is in the opposite side from $A$ respect to $BC$ and $\angle DAC = 90^o$. Find the $\angle ADB$. [u]Round 8[/u] [b]p22.[/b] Say the answer to problem $24$ is $z$. Compute $gcd (z,7z +24).$ [b]p23.[/b] Say the answer to problem $22$ is $x$. If $x$ is $1$, write down $1$ for this question. Otherwise, compute $$\sum^{\infty}_{k=1} \frac{1}{x^k}$$ [b]p24.[/b] Say the answer to problem $23$ is $y$. Compute $$\left \lfloor \frac{y^2 +1}{y} \right \rfloor$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165983p28809209]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166045p28809814]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 CHKMO, 1

Tags: algebra
Given that $ \{a_n\}$ is a sequence in which all the terms are integers, and $ a_2$ is odd. For any natural number $ n$, $ n(a_{n \plus{} 1} \minus{} a_n \plus{} 3) \equal{} a_{n \plus{} 1} \plus{} a_n \plus{} 3$. Furthermore, $ a_{2009}$ is divisible by $ 2010$. Find the smallest integer $ n > 1$ such that $ a_n$ is divisible by $ 2010$. P.S.: I saw EVEN instead of ODD. Got only half of the points.

2022 IFYM, Sozopol, 6

For the function $f : Z^2_{\ge0} \to Z_{\ge 0}$ it is known that $$f(0, j) = f(i, 0) = 1, \,\,\,\,\, \forall i, j \in N_0$$ $$f(i, j) = if (i, j - 1) + jf(i - 1, j),\,\,\,\,\, \forall i, j \in N$$ Prove that for every natural number $n$ the following inequality holds: $$\sum_{0\le i+j\le n+1} f(i, j) \le 2 \left(\sum^n_{k=0}\frac{1}{k!}\right)\left(\sum^n_{p=1}p!\right)+ 3$$