This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1986 All Soviet Union Mathematical Olympiad, 418

The square polynomial $x^2+ax+b+1$ has natural roots. Prove that $(a^2+b^2)$ is a composite number.

2006 Bulgaria Team Selection Test, 3

[b]Problem 6.[/b] Let $p>2$ be prime. Find the number of the subsets $B$ of the set $A=\{1,2,\ldots,p-1\}$ such that, the sum of the elements of $B$ is divisible by $p.$ [i] Ivan Landgev[/i]

1974 Polish MO Finals, 5

Prove that for any natural numbers $n,r$ with $r + 3 \le n $the binomial coefficients $n \choose r$, $n \choose r+1$, $n \choose r+2 $, $n \choose r+3 $ cannot be successive terms of an arithmetic progression.

2019 BMT Spring, Tie 2

Tags: algebra
If $P$ is a function such that $P(2x) = 2^{-3}P(x) + 1$, find $P(0)$.

2011 HMNT, 3

Tags: algebra
Find the sum of the coefficients of the polynomial $P(x) = x^4- 29x^3 + ax^2 + bx + c$, given that $P(5) = 11$, $P(11) = 17$, and $P(17) = 23$.

2010 AMC 10, 25

Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that \[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\] \[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\] What is the smallest possible value of $ a$? $ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

2005 IMO Shortlist, 3

Four real numbers $ p$, $ q$, $ r$, $ s$ satisfy $ p+q+r+s = 9$ and $ p^{2}+q^{2}+r^{2}+s^{2}= 21$. Prove that there exists a permutation $ \left(a,b,c,d\right)$ of $ \left(p,q,r,s\right)$ such that $ ab-cd \geq 2$.

2022 Polish MO Finals, 4

Find all triples $(a,b,c)$ of real numbers satisfying the system $\begin{cases} a^3+b^2c=ac \\ b^3+c^2a=ba \\ c^3+a^2b=cb \end{cases}$

2017 China Team Selection Test, 2

Find the least positive number m such that for any polynimial f(x) with real coefficients, there is a polynimial g(x) with real coefficients (degree not greater than m) such that there exist 2017 distinct number $a_1,a_2,...,a_{2017}$ such that $g(a_i)=f(a_{i+1})$ for i=1,2,...,2017 where indices taken modulo 2017.

2001 Taiwan National Olympiad, 1

Let $A$ be a set with at least $3$ integers, and let $M$ be the maximum element in $A$ and $m$ the minimum element in $A$. it is known that there exist a polynomial $P$ such that: $m<P(a)<M$ for all $a$ in $A$. And also $p(m)<p(a)$ for all $a$ in $A-(m,M)$. Prove that $n<6$ and there exist integers $b$ and $c$ such that $p(x)+x^2+bx+c$ is cero in $A$.

2014 Hanoi Open Mathematics Competitions, 7

Determine the integral part of $A$, where $A =\frac{1}{672}+\frac{1}{673}+... +\frac{1}{2014}$

2017 Thailand TSTST, 1

1.1 Let $f(A)$ denote the difference between the maximum value and the minimum value of a set $A$. Find the sum of $f(A)$ as $A$ ranges over the subsets of $\{1, 2, \dots, n\}$. 1.2 All cells of an $8 × 8$ board are initially white. A move consists of flipping the color (white to black or vice versa) of cells in a $1\times 3$ or $3\times 1$ rectangle. Determine whether there is a finite sequence of moves resulting in the state where all $64$ cells are black. 1.3 Prove that for all positive integers $m$, there exists a positive integer $n$ such that the set $\{n, n + 1, n + 2, \dots , 3n\}$ contains exactly $m$ perfect squares.

2002 India National Olympiad, 3

If $x$, $y$ are positive reals such that $x + y = 2$ show that $x^3y^3(x^3+ y^3) \leq 2$.

1975 IMO Shortlist, 4

Let $a_1, a_2, \ldots , a_n, \ldots $ be a sequence of real numbers such that $0 \leq a_n \leq 1$ and $a_n - 2a_{n+1} + a_{n+2} \geq 0$ for $n = 1, 2, 3, \ldots$. Prove that \[0 \leq (n + 1)(a_n - a_{n+1}) \leq 2 \qquad \text{ for } n = 1, 2, 3, \ldots\]

1978 Chisinau City MO, 160

Factor the polynomial $P (x) = 1 + x +x^2+...+x^{2^k-1}$

2012 Balkan MO Shortlist, A2

Let $a,b,c\ge 0$ and $a+b+c=\sqrt2$. Show that \[\frac1{\sqrt{1+a^2}}+\frac1{\sqrt{1+b^2}}+\frac1{\sqrt{1+c^2}} \ge 2+\frac1{\sqrt3}\] [hide] In general if $a_1, a_2, \cdots , a_n \ge 0$ and $\sum_{i=1}^n a_i=\sqrt2$ we have \[\sum_{i=1}^n \frac1{\sqrt{1+a_i^2}} \ge (n-1)+\frac1{\sqrt3}\] [/hide]

India EGMO 2025 TST, 2

Two positive integers are called anagrams if every decimal digit occurs the same number of times in each of them (not counting the leading zeroes). Find all non-constant polynomials $P$ with non-negative integer coefficients so that whenever $a$ and $b$ are anagrams, $P(a)$ and $P(b)$ are anagrams as well. Proposed by Sutanay Bhattacharya

1992 All Soviet Union Mathematical Olympiad, 558

Show that $x^4 + y^4 + z^2\ge xyz \sqrt8$ for all positive reals $x, y, z$.

2024 Iran MO (3rd Round), 3

Tags: algebra
An integer number $n\geq 2$ and real numbers $x_1<x_2<\cdots < x_n$ are given. $f: \mathbb R \to \mathbb R$ is a function defined as $$ f(x) = \left | \dfrac{(x-x_2)(x-x_3)\cdots (x-x_n)}{(x_1-x_2)(x_1-x_3)\cdots (x_1-x_n)} \right | + \cdots + \left | \dfrac{(x-x_1)(x-x_2)\cdots (x-x_{n-1})}{(x_n-x_1)(x_n-x_2)\cdots (x_n-x_{n-1})} \right |. $$ Prove that there exists $i\in \{1,2,\cdots,n-1\}$ such that for all $x\in (x_i,x_{i+1})$ one has $f(x)< \sqrt n$. Proposed by [i]Navid Safaei[/i]

2020 Balkan MO Shortlist, A1

Tags: algebra
Denote $\mathbb{Z}_{>0}=\{1,2,3,...\}$ the set of all positive integers. Determine all functions $f:\mathbb{Z}_{>0}\rightarrow \mathbb{Z}_{>0}$ such that, for each positive integer $n$, $\hspace{1cm}i) \sum_{k=1}^{n}f(k)$ is a perfect square, and $\vspace{0.1cm}$ $\hspace{1cm}ii) f(n)$ divides $n^3$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2016 District Olympiad, 1

Solve in $ \mathbb{N}^2: $ $$ x+y=\sqrt x+\sqrt y+\sqrt{xy} . $$

1995 All-Russian Olympiad Regional Round, 10.1

Given function $f(x) = \dfrac{1}{\sqrt[3]{1-x^3}}$, find $\underbrace{f(... f(f(19))...)}_{95}$. .

2013 Federal Competition For Advanced Students, Part 2, 2

Tags: function , algebra
Let $k$ be an integer. Determine all functions $f\colon \mathbb{R}\to\mathbb{R}$ with $f(0)=0$ and \[f(x^ky^k)=xyf(x)f(y)\qquad \mbox{for } x,y\neq 0.\]

2001 China Team Selection Test, 2

Let $\theta_i \in \left ( 0,\frac{\pi}{4} \right ]$ for $i=1,2,3,4$. Prove that: $\tan \theta _1 \tan \theta _2 \tan \theta _3 \tan \theta _4 \le (\frac{\sin^8 \theta _1+\sin^8 \theta _2+\sin^8 \theta _3+\sin^8 \theta _4}{\cos^8 \theta _1+\cos^8 \theta _2+\cos^8 \theta _3+\cos^8 \theta _4})^\frac{1}{2}$ [hide=edit]@below, fixed now. There were some problems (weird characters) so aops couldn't send it.[/hide]

1999 Kazakhstan National Olympiad, 1

Prove that for any real numbers $ a_1, a_2, \dots, a_ {100} $ there exists a real number $ b $ such that all numbers $ a_i + b $ ($ 1 \leq i \leq 100 $) are irrational.