This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2011 ELMO Problems, 3

Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$. [i]Alex Zhu.[/i]

2015 IMO Shortlist, A1

Tags: algebra
Suppose that a sequence $a_1,a_2,\ldots$ of positive real numbers satisfies \[a_{k+1}\geq\frac{ka_k}{a_k^2+(k-1)}\] for every positive integer $k$. Prove that $a_1+a_2+\ldots+a_n\geq n$ for every $n\geq2$.

1982 All Soviet Union Mathematical Olympiad, 347

Can you find three polynomials $P,Q,R$ of three variables $x,y,z$, providing the condition: a)$P(x-y+z)^3 + Q(y-z-1)^3 +R(z-2x+1)^3 = 1$ b)$P(x-y+z)^3 + Q(y-z-1)^3 +R(z-x+1)^3 = 1$ for all $x,y,z$?

2020 Nigerian Senior MO Round 2, 1

Let $k$ be a real number. Define on the set of reals the operation $x*y$= $\frac{xy}{x+y+k}$ whenever $x+y$ does not equal $-k$. Let $x_1<x_2<x_3<x_4$ be the roots of $t^4=27(t^2+t+1)$.suppose that $[(x_1*x_2)*x_3]*x_4=1$. Find all possible values of $k$

1994 Canada National Olympiad, 2

Tags: algebra
Prove that $(\sqrt{2}-1)^n$ $\forall n\in \mathbb{Z}^{+}$ can be represented as $\sqrt{m}-\sqrt{m-1}$ for some $m\in \mathbb{Z}^{+}$.

2014 Vietnam Team Selection Test, 5

Find all polynomials $P(x),Q(x)$ which have integer coefficients and satify the following condtion: For the sequence $(x_n )$ defined by \[x_0=2014,x_{2n+1}=P(x_{2n}),x_{2n}=Q(x_{2n-1}) \quad n\geq 1\] for every positive integer $m$ is a divisor of some non-zero element of $(x_n )$

2018 Purple Comet Problems, 26

Tags: algebra
Let $a, b$, and $c$ be real numbers. Let $u = a^2 + b^2 + c^2$ and $v = 2ab + 2bc + 2ca$. Suppose $2018u = 1001v + 1024$. Find the maximum possible value of $35a - 28b - 3c$.

2009 Brazil Team Selection Test, 3

Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$; (ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$. Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list] [i]Proposed by Hans Zantema, Netherlands[/i]

1958 AMC 12/AHSME, 46

For values of $ x$ less than $ 1$ but greater than $ \minus{}4$, the expression \[ \frac{x^2 \minus{} 2x \plus{} 2}{2x \minus{} 2} \] has: $ \textbf{(A)}\ \text{no maximum or minimum value}\qquad \\ \textbf{(B)}\ \text{a minimum value of }{\plus{}1}\qquad \\ \textbf{(C)}\ \text{a maximum value of }{\plus{}1}\qquad \\ \textbf{(D)}\ \text{a minimum value of }{\minus{}1}\qquad \\ \textbf{(E)}\ \text{a maximum value of }{\minus{}1}$

2023 Olimphíada, 1

The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1}+F_n$ for every integer $n$. Let $k$ be a fixed integer. A sequence $(a_n)$ of integers is said to be $\textit{phirme}$ if $a_n + a_{n+1} = F_{n+k}$ for all $n \geq 1$. Find all $\textit{phirme}$ sequences in terms of $n$ and $k$.

2023 Benelux, 1

Tags: algebra
Find all functions $f\colon\mathbb{R}\to\mathbb{R}$ such that $(x-y)\bigl(f(x)+f(y)\bigr)\leqslant f\bigl(x^2-y^2\bigr)$ for all $x,y\in\mathbb{R}$.

2022 Taiwan TST Round 1, A

Find all $f:\mathbb{Z}\to\mathbb{Z}$ such that \[f\left(\left\lfloor\frac{f(x)+f(y)}{2}\right\rfloor\right)+f(x)=f(f(y))+\left\lfloor\frac{f(x)+f(y)}{2}\right\rfloor\] holds for all $x,y\in\mathbb{Z}$. [i]Proposed by usjl[/i]

1996 All-Russian Olympiad Regional Round, 8.1

Tags: algebra
Ice cream costs $2000$ rubles. Petya has $$400^5 - 399^2\cdot (400^3 + 2\cdot 400^2 + 3\cdot 400 + 4)$$ rubles. Does Petya have enough money for ice cream?

1998 Brazil National Olympiad, 1

Two players play a game as follows. The first player chooses two non-zero integers A and B. The second player forms a quadratic with A, B and 1998 as coefficients (in any order). The first player wins iff the equation has two distinct rational roots. Show that the first player can always win.

2016 Azerbaijan National Mathematical Olympiad, 4

Tags: algebra , function
Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation $$\sum_{i=1}^{2015} f(x_i + x_{i+1}) + f\left( \sum_{i=1}^{2016} x_i \right) \le \sum_{i=1}^{2016} f(2x_i)$$ for all real numbers $x_1, x_2, ... , x_{2016}.$

1983 Austrian-Polish Competition, 1

Nonnegative real numbers $a, b,x,y$ satisfy $a^5 + b^5 \le $1 and $x^5 + y^5 \le 1$. Prove that $a^2x^3 + b^2y^3 \le 1$.

2014 Saudi Arabia Pre-TST, 4.2

Given $x \ge 0$, prove that $$\frac{(x^2 + 1)^6}{2^7}+\frac12 \ge x^5 - x^3 + x$$

2001 Kazakhstan National Olympiad, 5

Find all possible pairs of real numbers $ (x, y) $ that satisfy the equalities $ y ^ 2- [x] ^ 2 = 2001 $ and $ x ^ 2 + [y] ^ 2 = 2001 $.

2015 AIME Problems, 10

Let $f(x)$ be a third-degree polynomial with real coefficients satisfying \[|f(1)|=|f(2)|=|f(3)|=|f(5)|=|f(6)|=|f(7)|=12.\] Find $|f(0)|$.

1982 IMO Longlists, 32

The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.

PEN A Problems, 4

If $a, b, c$ are positive integers such that \[0 < a^{2}+b^{2}-abc \le c,\] show that $a^{2}+b^{2}-abc$ is a perfect square.

1998 Singapore Team Selection Test, 2

Let $ a_1\geq \cdots \geq a_n \geq a_{n \plus{} 1} \equal{} 0$ be real numbers. Show that \[ \sqrt {\sum_{k \equal{} 1}^n a_k} \leq \sum_{k \equal{} 1}^n \sqrt k (\sqrt {a_k} \minus{} \sqrt {a_{k \plus{} 1}}). \] [i]Proposed by Romania[/i]

2021 China Team Selection Test, 3

Given positive integers $a,b,c$ which are pairwise coprime. Let $f(n)$ denotes the number of the non-negative integer solution $(x,y,z)$ to the equation $$ax+by+cz=n.$$ Prove that there exists constants $\alpha, \beta, \gamma \in \mathbb{R}$ such that for any non-negative integer $n$, $$|f(n)- \left( \alpha n^2+ \beta n + \gamma \right) | < \frac{1}{12} \left( a+b+c \right).$$

1984 Spain Mathematical Olympiad, 8

Find the remainder upon division by $x^2-1$ of the determinant $$\begin{vmatrix} x^3+3x & 2 & 1 & 0 \\ x^2+5x & 3 & 0 & 2 \\x^4 +x^2+1 & 2 & 1 & 3 \\x^5 +1 & 1 & 2 & 3 \\ \end{vmatrix}$$

1997 Slovenia Team Selection Test, 2

Find all polynomials $p$ with real coefficients such that for all real $x$ , $xp(x)p(1-x)+x^3 +100 \ge 0$.