This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2020 Jozsef Wildt International Math Competition, W27

Let $$P(x)=a_0x^n+a_1x^{n-1}+\ldots+a_n$$ where $a_0,\ldots,a_n$ are integers. Show that if $P$ takes the value $2020$ for four distinct integral values of $x$, then $P$ cannot take the value $2001$ for any integral value of $x$. [i]Proposed by Ángel Plaza[/i]

2020 BMT Fall, 3

The graph of the degree $2021$ polynomial $P(x)$, which has real coefficients and leading coefficient $1$, meets the $x$-axis at the points $(1,0),\, (2,0),\,(3,0),\dots,\, (2020,0)$ and nowhere else. The mean of all possible values of $P(2021)$ can be written in the form $a!/b$, where $a$ and $b$ are positive integers and $a$ is as small as possible. Compute $a+b$.

ABMC Accuracy Rounds, 2020

[b]p1.[/b] James has $8$ Instagram accounts, $3$ Facebook accounts, $4$ QQ accounts, and $3$ YouTube accounts. If each Instagram account has $19$ pictures, each Facebook account has $5$ pictures and $9$ videos, each QQ account has a total of $17$ pictures, and each YouTube account has $13$ videos and no pictures, how many pictures in total does James have in all these accounts? [b]p2.[/b] If Poonam can trade $7$ shanks for $4$ shinks, and she can trade $10$ shinks for $17$ shenks. How many shenks can Poonam get if she traded all of her $105$ shanks? [b]p3.[/b] Jerry has a bag with $3$ red marbles, $5$ blue marbles and $2$ white marbles. If Jerry randomly picks two marbles from the bag without replacement, the probability that he gets two different colors can be expressed as a fraction $\frac{m}{n}$ in lowest terms. What is $m + n$? [b]p4.[/b] Bob's favorite number is between $1200$ and $4000$, divisible by $5$, has the same units and hundreds digits, and the same tens and thousands digits. If his favorite number is even and not divisible by $3$, what is his favorite number? [b]p5.[/b] Consider a unit cube $ABCDEFGH$. Let $O$ be the center of the face $EFGH$. The length of $BO$ can be expressed in the form $\frac{\sqrt{a}}{b}$, where $a$ and $b$ are simplified to lowest terms. What is $a + b$? [b]p6.[/b] Mr. Eddie Wang is a crazy rich boss who owns a giant company in Singapore. Even though Mr. Wang appears friendly, he finds great joy in firing his employees. His immediately fires them when they say "hello" and/or "goodbye" to him. It is well known that $1/2$ of the total people say "hello" and/or "goodbye" to him everyday. If Mr. Wang had $2050$ employees at the end of yesterday, and he hires $2$ new employees at the beginning of each day, in how many days will Mr. Wang first only have $6$ employees left? [b]p7.[/b] In $\vartriangle ABC$, $AB = 5$, $AC = 6$. Let $D,E,F$ be the midpoints of $\overline{BC}$, $\overline{AC}$, $\overline{AB}$, respectively. Let $X$ be the foot of the altitude from $D$ to $\overline{EF}$. Let $\overline{AX}$ intersect $\overline{BC}$ at $Y$ . Given $DY = 1$, the length of $BC$ is $\frac{p}{q}$ for relatively prime positive integers $p, q$: Find $p + q$. [b]p8.[/b] Given $\frac{1}{2006} = \frac{1}{a} + \frac{1}{b}$ where $a$ is a $4$ digit positive integer and $b$ is a $6$ digit positive integer, find the smallest possible value of $b$. [b]p9.[/b] Pocky the postman has unlimited stamps worth $5$, $6$ and $7$ cents. However, his post office has two very odd requirements: On each envelope, an odd number of $7$ cent stamps must be used, and the total number of stamps used must also be odd. What is the largest amount of postage money Pocky cannot make with his stamps, in cents? [b]p10.[/b] Let $ABCDEF$ be a regular hexagon with side length $2$. Let $G$ be the midpoint of side $DE$. Now let $O$ be the intersection of $BG$ and $CF$. The radius of the circle inscribed in triangle $BOC$ can be expressed in the form $\frac{a\sqrt{b}-\sqrt{c}}{d} $ where $a$, $b$, $c$, $d$ are simplified to lowest terms. What is $a + b + c + d$? [b]p11.[/b] Estimation (Tiebreaker): What is the total number of characters in all of the participants' email addresses in the Accuracy Round? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Romania Team Selection Test, 3

Let $n\geq 0$ be an integer and let $p \equiv 7 \pmod 8$ be a prime number. Prove that \[ \sum^{p-1}_{k=1} \left \{ \frac {k^{2^n}}p - \frac 12 \right\} = \frac {p-1}2 . \] [i]Călin Popescu[/i]

2012 AMC 10, 22

The sum of the first $m$ positive odd integers is $212$ more than the sum of the first $n$ positive even integers. What is the sum of all possible values of $n$? $ \textbf{(A)}\ 255 \qquad\textbf{(B)}\ 256 \qquad\textbf{(C)}\ 257 \qquad\textbf{(D)}\ 258 \qquad\textbf{(E)}\ 259 $

1994 Turkey Team Selection Test, 3

Find all integer pairs $(a,b)$ such that $a\cdot b$ divides $a^2+b^2+3$.

2017 IMO, 2

Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for any real numbers $x$ and $y$, \[ f(f(x)f(y)) + f(x+y) = f(xy). \] [i]Proposed by Dorlir Ahmeti, Albania[/i]

1995 Singapore Team Selection Test, 1

Let $N =\{1, 2, 3, ...\}$ be the set of all natural numbers and $f : N\to N$ be a function. Suppose $f(1) = 1$, $f(2n) = f(n)$ and $f(2n + 1) = f(2n) + 1$ for all natural numbers $n$. (i) Calculate the maximum value $M$ of $f(n)$ for $n \in N$ with $1 \le n \le 1994$. (ii) Find all $n \in N$, with 1 \le n \le 1994, such that $f(n) = M$.

2022 BMT, Tie 2

Tags: algebra
Suppose that $(i - 1)^{11}$ is a root of the quadratic $x^2 + Ax + B$ for integers $A$ and $B$, where $i =\sqrt{-1}$. Compute the value of $A + B$.

2023 IFYM, Sozopol, 4

Find all real numbers $a$ for which there exist functions $f,g: \mathbb{R} \to \mathbb{R}$, where $g$ is strictly increasing, such that $f(1) = 1$, $f(2) = a$, and \[ f(x) - f(y) \leq (x-y)(g(x) - g(y)) \] for all real numbers $x$ and $y$.

1946 Moscow Mathematical Olympiad, 121

Given the Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, ... ,$ ascertain whether among its first $(10^8+1)$ terms there is a number that ends with four zeros.

2023 Belarusian National Olympiad, 10.3

Let $a,b,c$ be positive real numbers, that satisfy $abc=1$. Prove the inequality: $$\frac{ab}{1+c}+\frac{bc}{1+a}+\frac{ca}{1+b} \geq \frac{27}{(a+b+c)(3+a+b+c)}$$

2003 Indonesia MO, 3

Find all real numbers $x$ such that $\left\lfloor x^2 \right\rfloor + \left\lceil x^2 \right\rceil = 2003$.

2019 India IMO Training Camp, P3

Tags: algebra
Let $n\ge 2$ be an integer. Solve in reals: \[|a_1-a_2|=2|a_2-a_3|=3|a_3-a_4|=\cdots=n|a_n-a_1|.\]

2010 Germany Team Selection Test, 2

Tags: algebra
We are given $m,n \in \mathbb{Z}^+.$ Show the number of solution $4-$tuples $(a,b,c,d)$ of the system \begin{align*} ab + bc + cd - (ca + ad + db) &= m\\ 2 \left(a^2 + b^2 + c^2 + d^2 \right) - (ab + ac + ad + bc + bd + cd) &= n \end{align*} is divisible by 10.

1999 China Team Selection Test, 2

For a fixed natural number $m \geq 2$, prove that [b]a.)[/b] There exists integers $x_1, x_2, \ldots, x_{2m}$ such that \[x_i x_{m + i} = x_{i + 1} x_{m + i - 1} + 1, i = 1, 2, \ldots, m \hspace{2cm}(*)\] [b]b.)[/b] For any set of integers $\lbrace x_1, x_2, \ldots, x_{2m}$ which fulfils (*), an integral sequence $\ldots, y_{-k}, \ldots, y_{-1}, y_0, y_1, \ldots, y_k, \ldots$ can be constructed such that $y_k y_{m + k} = y_{k + 1} y_{m + k - 1} + 1, k = 0, \pm 1, \pm 2, \ldots$ such that $y_i = x_i, i = 1, 2, \ldots, 2m$.

2009 Kyiv Mathematical Festival, 2

Let $x,y,z$ be positive numebrs such that $x+y+z\le x^3+y^3+z^3$. Is it true that a) $x^2+y^2+z^2 \le x^3+y^3+z^3$ ? b) $x+y+z\le x^2+y^2+z^2$ ?

2013 HMNT, 10

Let $\omega= \cos \frac{2\pi}{727} + i \sin \frac{2\pi}{727}$. The imaginary part of the complex number $$\prod^{13}_{k=8} \left(1 + \omega^{3^{k-1}}+ \omega^{2\cdot 3^{k-1}}\right)$$ is equal to $\sin a$ for some angle $a$ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ , inclusive. Find $a$.

1981 IMO Shortlist, 1

[b]a.)[/b] For which $n>2$ is there a set of $n$ consecutive positive integers such that the largest number in the set is a divisor of the least common multiple of the remaining $n-1$ numbers? [b]b.)[/b] For which $n>2$ is there exactly one set having this property?

2019 ELMO Shortlist, A2

Find all functions $f:\mathbb Z\to \mathbb Z$ such that for all surjective functions $g:\mathbb Z\to \mathbb Z$, $f+g$ is also surjective. (A function $g$ is surjective over $\mathbb Z$ if for all integers $y$, there exists an integer $x$ such that $g(x)=y$.) [i]Proposed by Sean Li[/i]

2022 Canadian Mathematical Olympiad Qualification, 3

Consider n real numbers $x_0, x_1, . . . , x_{n-1}$ for an integer $n \ge 2$. Moreover, suppose that for any integer $i$, $x_{i+n} = x_i$ . Prove that $$\sum^{n-1}_{i=0} x_i(3x_i - 4x_{i+1} + x_{i+2}) \ge 0.$$

2021 Romanian Master of Mathematics Shortlist, A3

A [i]tile[/i] $T$ is a union of finitely many pairwise disjoint arcs of a unit circle $K$. The [i]size[/i] of $T$, denoted by $|T|$, is the sum of the lengths of the arcs $T$ consists of, divided by $2\pi$. A [i]copy[/i] of $T$ is a tile $T'$ obtained by rotating $T$ about the centre of $K$ through some angle. Given a positive real number $\varepsilon < 1$, does there exist an infinite sequence of tiles $T_1,T_2,\ldots,T_n,\ldots$ satisfying the following two conditions simultaneously: 1) $|T_n| > 1 - \varepsilon$ for all $n$; 2) The union of all $T_n'$ (as $n$ runs through the positive integers) is a proper subset of $K$ for any choice of the copies $T_1'$, $T_2'$, $\ldots$, $T_n', \ldots$? [hide=Note] In the extralist the problem statement had the clause "three conditions" rather than two, but only two are presented, the ones you see. I am quite confident this is a typo or that the problem might have been reformulated after submission.[/hide]

Kettering MO, 2009

[b]p1.[/b] Prove that if $a, b, c, d$ are real numbers, then $$\max \{a + c, b + d\} \le \max \{a, b\} + \max \{c, d\}$$ [b]p2.[/b] Find the smallest positive integer whose digits are all ones which is divisible by $3333333$. [b]p3.[/b] Find all integer solutions of the equation $\sqrt{x} +\sqrt{y} =\sqrt{2560}$. [b]p4.[/b] Find the irrational number: $$A =\sqrt{ \frac12+\frac12 \sqrt{\frac12+\frac12 \sqrt{ \frac12 +...+ \frac12 \sqrt{ \frac12}}}}$$ ($n$ square roots). [b]p5.[/b] The Math country has the shape of a regular polygon with $N$ vertexes. $N$ airports are located on the vertexes of that polygon, one airport on each vertex. The Math Airlines company decided to build $K$ additional new airports inside the polygon. However the company has the following policies: (i) it does not allow three airports to lie on a straight line, (ii) any new airport with any two old airports should form an isosceles triangle. How many airports can be added to the original $N$? [b]p6.[/b] The area of the union of the $n$ circles is greater than $9$ m$^2$(some circles may have non-empty intersections). Is it possible to choose from these $n$ circles some number of non-intersecting circles with total area greater than $1$ m$^2$? PS. You should use hide for answers.

2007 Moldova Team Selection Test, 1

Find the least positive integers $m,k$ such that a) There exist $2m+1$ consecutive natural numbers whose sum of cubes is also a cube. b) There exist $2k+1$ consecutive natural numbers whose sum of squares is also a square. The author is Vasile Suceveanu

1997 Brazil National Olympiad, 5

Let $f(x)= x^2-C$ where $C$ is a rational constant. Show that exists only finitely many rationals $x$ such that $\{x,f(x),f(f(x)),\ldots\}$ is finite