This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2009 Kosovo National Mathematical Olympiad, 1

Tags: algebra
Find the graph of the function $y=x+|1-x^3|$.

2014 IFYM, Sozopol, 4

Find all polynomials $P,Q\in \mathbb{R}[x]$, such that $P(2)=2$ , $Q(x)$ has no negative roots, and $(x-2)P(x^2-1)Q(x+1)=P(x)Q(x^2 )+Q(x+1)$.

2021 BMT, 5

Compute the sum of the real solutions to $\lfloor x \rfloor \{x\} = 2020x$. Here, $\lfloor x \rfloor$ is defined as the greatest integer less than or equal to $x$, and$ \{x\} = x -\lfloor x \rfloor$.

2013 APMO, 2

Determine all positive integers $n$ for which $\dfrac{n^2+1}{[\sqrt{n}]^2+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to $r$.

1987 Swedish Mathematical Competition, 4

A differentiable function $f$ with $f(0) = f(1) = 0$ is defined on the interval $[0,1]$. Prove that there exists a point $y \in [0,1]$ such that $| f' (y)| = 4 \int _0^1 | f(x)|dx$.

Russian TST 2015, P1

Let $P(x, y)$ and $Q(x, y)$ be polynomials in two variables with integer coefficients. The sequences of integers $a_0, a_1,\ldots$ and $b_0, b_1,\ldots$ satisfy \[a_{n+1}=P(a_n,b_n),\quad b_{n+1}=Q(a_n,b_n)\]for all $n\geqslant 0$. Let $m_n$ be the number of integer points of the coordinate plane, lying strictly inside the segment with endpoints $(a_n,b_n)$ and $(a_{n+1},b_{n+1})$. Prove that the sequence $m_0,m_1,\ldots$ is non-decreasing.

2015 Hanoi Open Mathematics Competitions, 8

Tags: algebra , equation
Solve the equation $(2015x -2014)^3 = 8(x-1)^3 + (2013x -2012)^3$

2023 Peru MO (ONEM), 2

For each positive real number $x$, let $f(x)=\frac{x}{1+x}$ . Prove that if $a$, $b,$ $c$ are the sidelengths of a triangle, then $f(a)$, $f(b),$ $f(c)$ are sidelengths of a triangle.

2023 Romania National Olympiad, 3

We say that a natural number $n$ is interesting if it can be written in the form \[ n = \left\lfloor \frac{1}{a} \right\rfloor + \left\lfloor \frac{1}{b} \right\rfloor + \left\lfloor \frac{1}{c} \right\rfloor, \] where $a,b,c$ are positive real numbers such that $a + b + c = 1.$ Determine all interesting numbers. ( $\lfloor x \rfloor$ denotes the greatest integer not greater than $x$.)

2020 Olympic Revenge, 1

Tags: algebra
Let $n$ be a positive integer and $a_1, a_2, \dots, a_n$ non-zero real numbers. What is the least number of non-zero coefficients that the polynomial $P(x) = (x - a_1)(x - a_2)\cdots(x - a_n)$ can have?

2022 Korea National Olympiad, 7

Suppose that the sequence $\{a_n\}$ of positive reals satisfies the following conditions: [list] [*]$a_i \leq a_j$ for every positive integers $i <j$. [*]For any positive integer $k \geq 3$, the following inequality holds: $$(a_1+a_2)(a_2+a_3)\cdots(a_{k-1}+a_k)(a_k+a_1)\leq (2^k+2022)a_1a_2\cdots a_k$$ [/list] Prove that $\{a_n\}$ is constant.

2019 Israel Olympic Revenge, P1

A polynomial $P$ in $n$ variables and real coefficients is called [i]magical[/i] if $P(\mathbb{N}^n)\subset \mathbb{N}$, and moreover the map $P: \mathbb{N}^n \to \mathbb{N}$ is a bijection. Prove that for all positive integers $n$, there are at least \[n!\cdot (C(n)-C(n-1))\] magical polynomials, where $C(n)$ is the $n$-th Catalan number. Here $\mathbb{N}=\{0,1,2,\dots\}$.

1979 IMO Longlists, 65

Given a function $f$ such that $f(x)\le x\forall x\in\mathbb{R}$ and $f(x+y)\le f(x)+f(y)\forall \{x,y\}\in\mathbb{R}$, prove that $f(x)=x\forall x\in\mathbb{R}$.

1977 IMO Longlists, 21

Tags: algebra
Given that $x_1+x_2+x_3=y_1+y_2+y_3=x_1y_1+x_2y_2+x_3y_3=0,$ prove that: \[ \frac{x_1^2}{x_1^2+x_2^2+x_3^2}+\frac{y_1^2}{y_1^2+y_2^2+y_3^2}=\frac{2}{3}\]

2014 Chile TST Ibero, 1

Tags: algebra , function
Consider a function $f: \mathbb{R} \to \mathbb{R}$ satisfying for all $x \in \mathbb{R}$: \[ f(x+1) = \frac{1}{2} + \sqrt{f(x) - f(x)^2}. \] Prove that there exists a $b > 0$ such that $f(x + b) = f(x)$ for all $x \in \mathbb{R}$.

1989 IMO Shortlist, 2

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. If the two rooms have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the carpet dimensions?

2021 Saint Petersburg Mathematical Olympiad, 4

Tags: function , algebra
The following functions are written on the board, $$F(x) = x^2 + \frac{12}{x^2}, G(x) = \sin(\pi x^2), H(x) = 1.$$ If functions $f,g$ are currently on the board, we may write on the board the functions $$f(x) + g(x), f(x) - g(x), f(x)g(x), cf(x)$$ (the last for any real number $c$). Can a function $h(x)$ appear on the board such that $$|h(x) - x| < \frac{1}{3}$$ for all $x \in [1,10]$ ?

2008 Indonesia MO, 4

Find all function $ f: \mathbb{N}\rightarrow\mathbb{N}$ satisfy $ f(mn)\plus{}f(m\plus{}n)\equal{}f(m)f(n)\plus{}1$ for all natural number $ n$

2006 Junior Balkan Team Selection Tests - Romania, 1

Prove that $\frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ba} \ge a + b + c$, for all positive real numbers $a, b$, and $c$.

2022 Saudi Arabia IMO TST, 3

Find all non-constant functions $f : Q^+ \to Q^+$ satisfying the equation $$f(ab + bc + ca) =f(a)f(b) +f(b)f(c)+f(c)f(a)$$ for all $a, b,c \in Q^+$ .

2001 Dutch Mathematical Olympiad, 1

In a tournament, every team plays exactly once against every other team. One won match earns $3$ points for the winner and $0$ for the loser. With a draw both teams receive $1$ point each. At the end of the tournament it appears that all teams together have achieved $15$ points. The last team on the final list scored exactly $1$ point. The second to last team has not lost a match. a) How many teams participated in the tournament? b) How many points did the team score in second place in the final ranking?

2010 Romanian Masters In Mathematics, 6

Given a polynomial $f(x)$ with rational coefficients, of degree $d \ge 2$, we define the sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \ldots$ as $f^0(\mathbb{Q})=\mathbb{Q}$, $f^{n+1}(\mathbb{Q})=f(f^{n}(\mathbb{Q}))$ for $n\ge 0$. (Given a set $S$, we write $f(S)$ for the set $\{f(x)\mid x\in S\})$. Let $f^{\omega}(\mathbb{Q})=\bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$, $n\geq 0$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set. [i]Dan Schwarz, Romania[/i]

2024 Korea Junior Math Olympiad (First Round), 12.

For reals $x,y$, find the maximum of A. $ A=\frac{-x^2-y^2-2xy+30x+30y+75}{3x^2-12xy+12y^2+12} $

1992 China National Olympiad, 1

Let equation $x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\dots +a_1x+a_0=0$ with real coefficients satisfy $0<a_0\le a_1\le a_2\le \dots \le a_{n-1}\le 1$. Suppose that $\lambda$ ($|\lambda|>1$) is a complex root of the equation, prove that $\lambda^{n+1}=1$.

2021 HMNT, 7

Tags: algebra
Let $f(x) = x^3 + 3x - 1$ have roots $ a, b, c$. Given that $\frac{1}{a^3 + b^3}+\frac{1}{b^3 + c^3}+\frac{1}{c^3 + a^3}$ can be written as $\frac{m}{n}$, where $m, n$ are positive integers and $gcd(m, n) = 1$, find $100m + n$.