This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2015 Balkan MO Shortlist, N2

Sequence $(a_n)_{n\geq 0}$ is defined as $a_{0}=0, a_1=1, a_2=2, a_3=6$, and $ a_{n+4}=2a_{n+3}+a_{n+2}-2a_{n+1}-a_n, n\geq 0$. Prove that $n^2$ divides $a_n$ for infinite $n$. (Romania)

2005 Taiwan TST Round 3, 1

Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying \[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\] for any two positive integers $ m$ and $ n$. [i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers: $ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$. By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$). [i]Proposed by Mohsen Jamali, Iran[/i]

2012 IFYM, Sozopol, 5

Let $\sum_{i=1}^n a_i x_i =0$, $a_i,x_i\in \mathbb{Z}$. It is known that however we color $\mathbb{Z}$ with finite number of colors, then the given equation has a monochromatic (of one color) solution. Prove that there is some non-empty sum of its coefficients equal to 0.

MMPC Part II 1958 - 95, 1972

[b]p1.[/b] In a given tetrahedron the sum of the measures of the three face angles at each of the vertices is $180$ degrees. Prove that all faces of the tetrahedron are congruent triangles. [img]https://cdn.artofproblemsolving.com/attachments/c/c/40f03324fd19f6a5e0a5e541153a2b38faac79.png[/img] [b]p2.[/b] The digital sum $D(n)$ of a positive integer $n$ is defined recursively by: $D(n) = n$ if $1 \le n \le 9$ $D(n) = D(a_0 + a_1 + ... + a_m)$ if $n>9$ where $a_0 , a_1 ,..,a_m$ are all the digits of $n$ expressed in base ten. (For example, $D(959) = D(26) = D(8) = 8$.) Prove that $D(n \times 1234)= D(n)$ fcr all positive integers $n$ . [b]p3.[/b] A right triangle has area $A$ and perimeter $P$ . Find the largest possible value for the positive constant $k$ such that for every such triangle, $P^2 \ge kA$ . [b]p4.[/b] In the accompanying diagram, $\overline{AB}$ is tangent at $A$ to a circle of radius $1$ centered at $O$ . The segment $\overline{AP}$ is equal in length to the arc $AB$ . Let $C$ be the point of intersection of the lines $AO$ and $PB$ . Determine the length of segment $\overline{AC}$ in terms of $a$ , where $a$ is the measure of $\angle AOB$ in radians. [img]https://cdn.artofproblemsolving.com/attachments/e/0/596e269a89a896365b405af7bc6ca47a1f7c57.png[/img] [b]p5.[/b] Let $a_1 = a > 0$ and $a_2 = b >a$. Consider the sequence $\{a_1,a_2,a_3,...\}$ of positive numbers defined by: $a_3=\sqrt{a_1a_2}$, $a_4=\sqrt{a_2a_3}$, $...$ and in general, $a_n=\sqrt{a_{n-2}a_{n-1}}$, for $n\ge 3$ . Develop a formula $a_n$ expressing in terms of $a$, $b$ and $n$ , and determine $\lim_{n \to \infty} a_n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

ABMC Accuracy Rounds, 2021

[b]p1.[/b] There is a string of numbers $1234567891023...910134 ...91012...$ that concatenates the numbers $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, then $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, then $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, $2$, and so on. After $10$, $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, the string will be concatenated with $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$ again. What is the $2021$st digit? [b]p2.[/b] Bob really likes eating rice. Bob starts eating at the rate of $1$ bowl of rice per minute. Every minute, the number of bowls of rice Bob eats per minute increases by $1$. Given there are $78$ bowls of rice, find number of minutes Bob needs to finish all the rice. [b]p3.[/b] Suppose John has $4$ fair coins, one red, one blue, one yellow, one green. If John flips all $4$ coins at once, the probability he will land exactly $3$ heads and land heads on both the blue and red coins can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p4.[/b] Three of the sides of an isosceles trapezoid have lengths $1$, $10$, $20$ Find the sum of all possible values of the fourth side. [b]p5.[/b] An number two-three-delightful if and only if it can be expressed as the product of $2$ consecutive integers larger than $1$ and as the product of $3$ consecutive integers larger than $1$. What is the smallest two-three-delightful number? [b]p6.[/b] There are $3$ students total in Justin's online chemistry class. On a $100$ point test, Justin's two classmates scored $4$ and $7$ points. The teacher notices that the class median score is equal to $gcd(x, 42)$, where the positive integer $x$ is Justin's score. Find the sum of all possible values of Justin's score. [b]p7.[/b] Eddie's gym class of $10$ students decides to play ping pong. However, there are only $4$ tables and only $2$ people can play at a table. If $8$ students are randomly selected to play and randomly assigned a partner to play against at a table, the probability that Eddie plays against Allen is $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p8.[/b] Let $S$ be the set of integers $k$ consisting of nonzero digits, such that $300 < k < 400$ and $k - 300$ is not divisible by $11$. For each $k$ in $S$, let $A(k)$ denote the set of integers in $S$ not equal to $k$ that can be formed by permuting the digits of $k$. Find the number of integers $k$ in $S$ such that $k$ is relatively prime to all elements of $A(k)$. [b]p9.[/b] In $\vartriangle ABC$, $AB = 6$ and $BC = 5$. Point $D$ is on side $AC$ such that $BD$ bisects angle $\angle ABC$. Let $E$ be the foot of the altitude from $D$ to $AB$. Given $BE = 4$, find $AC^2$. [b]p10.[/b] For each integer $1 \le n \le 10$, Abe writes the number $2^n + 1$ on a blackboard. Each minute, he takes two numbers $a$ and $b$, erases them, and writes $\frac{ab-1}{a+b-2}$ instead. After $9$ minutes, there is one number $C$ left on the board. The minimum possible value of $C$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$. [b]p11.[/b] Estimation (Tiebreaker) Let $A$ and $B$ be the proportions of contestants that correctly answered Questions $9$ and $10$ of this round, respectively. Estimate $\left \lfloor \dfrac{1}{(AB)^2} \right \rfloor$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Regional Competition For Advanced Students, 4

Tags: algebra
Let $ <h_n>$ $ n\in\mathbb N$ a harmonic sequence of positive real numbers (that means that every $ h_n$ is the harmonic mean of its two neighbours $ h_{n\minus{}1}$ and $ h_{n\plus{}1}$ : $ h_n\equal{}\frac{2h_{n\minus{}1}h_{n\plus{}1}}{h_{n\minus{}1}\plus{}h_{n\plus{}1}}$) Show that: if the sequence includes a member $ h_j$, which is the square of a rational number, it includes infinitely many members $ h_k$, which are squares of rational numbers.

2005 Bosnia and Herzegovina Team Selection Test, 2

If $a_1$, $a_2$ and $a_3$ are nonnegative real numbers for which $a_1+a_2+a_3=1$, then prove the inequality $a_1\sqrt{a_2}+a_2\sqrt{a_3}+a_3\sqrt{a_1}\leq \frac{1}{\sqrt{3}}$

Mid-Michigan MO, Grades 5-6, 2004

[b]p1.[/b] On the island of Nevermind some people are liars; they always lie. The remaining habitants of the island are truthlovers; they tell only the truth. Three habitants of the island, $A, B$, and $C$ met this morning. $A$ said: “All of us are liars”. $B$ said: “Only one of us is a truthlover”. Who of them is a liar and who of them is a truthlover? [b]p2.[/b] Pinocchio has $9$ pieces of paper. He is allowed to take a piece of paper and cut it in $5$ pieces or $7$ pieces which increases the number of his pieces. Then he can take again one of his pieces of paper and cut it in $5$ pieces or $7$ pieces. He can do this again and again as many times as he wishes. Can he get $2004$ pieces of paper? [b]p3.[/b] In Dragonland there are coins of $1$ cent, $2$ cents, $10$ cents, $20$ cents, and $50$ cents. What is the largest amount of money one can have in coins, yet still not be able to make exactly $1$ dollar? [b]p4.[/b] Find all solutions $a, b, c, d, e$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccc} & a & b & c & d \\ + & a & c & a & c \\ \hline c & d & e & b & c \\ \end{tabular}$ [b]p5.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Turkey EGMO TST, 3

For all positive real numbers $x,y,z$ satisfying the inequality $$\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\leq 3,$$ prove that $$\frac{x^2}{y^3}+\frac{y^2}{z^3}+\frac{z^2}{x^3}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}.$$

2014 Bosnia Herzegovina Team Selection Test, 1

Tags: algebra
Sequence $a_n$ is defined by $a_1=\frac{1}{2}$, $a_m=\frac{a_{m-1}}{2m \cdot a_{m-1} + 1}$ for $m>1$. Determine value of $a_1+a_2+...+a_k$ in terms of $k$, where $k$ is positive integer.

1990 IMO Longlists, 6

Let function $f : \mathbb Z_{\geq 0}^0 \to \mathbb N$ satisfy the following conditions: (i) $ f(0, 0, 0) = 1;$ (ii) $f(x, y, z) = f(x - 1, y, z) + f(x, y - 1, z) + f(x, y, z - 1);$ (iii) when applying above relation iteratively, if any of $x', y', z$' is negative, then $f(x', y', z') = 0.$ Prove that if $x, y, z$ are the side lengths of a triangle, then $\frac{\left(f(x,y,z) \right) ^k}{ f(mx ,my, mz)}$ is not an integer for any integers $k, m > 1.$

2010 Belarus Team Selection Test, 2.4

Find all functions $f, g : Q \to Q$ satisfying the following equality $f(x + g(y)) = g(x) + 2 y + f(y)$ for all $x, y \in Q$. (I. Voronovich)

1976 Spain Mathematical Olympiad, 8

Given the function $$y =|x^2 - 4x + 3|.$$ Study its continuity and differentiability at the point of abscissa $1$. Its graph determines with the $X$ axis a closed figure. Determine the area of said figure.

2009 Hungary-Israel Binational, 1

For a given prime $ p > 2$ and positive integer $ k$ let \[ S_k \equal{} 1^k \plus{} 2^k \plus{} \ldots \plus{} (p \minus{} 1)^k\] Find those values of $ k$ for which $ p \, |\, S_k$.

1928 Eotvos Mathematical Competition, 1

Prove that, among the positive numbers $$a,2a, ...,(n - 1)a.$$ there is one that differs from an integer by at most $1/n$.

2001 Romania National Olympiad, 2

We consider a matrix $A\in M_n(\textbf{C})$ with rank $r$, where $n\ge 2$ and $1\le r\le n-1$. a) Show that there exist $B\in M_{n,r}(\textbf{C}), C\in M_{r,n}(\textbf{C})$, with $%Error. "rank" is a bad command. B=%Error. "rank" is a bad command. C = r$, such that $A=BC$. b) Show that the matrix $A$ verifies a polynomial equation of degree $r+1$, with complex coefficients.

Mid-Michigan MO, Grades 10-12, 2003

[b]p1.[/b] The length of the first side of a triangle is $1$, the length of the second side is $11$, and the length of the third side is an integer. Find that integer. [b]p2.[/b] Suppose $a, b$, and $c$ are positive numbers such that $a + b + c = 1$. Prove that $ab + ac + bc \le \frac13$. [b]p3.[/b] Prove that $1 +\frac12+\frac13+\frac14+ ... +\frac{1}{100}$ is not an integer. [b]p4.[/b] Find all of the four-digit numbers n such that the last four digits of $n^2$ coincide with the digits of $n$. [b]p5.[/b] (Bonus) Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1971 Polish MO Finals, 1

Show that if $(a_n)$ is an infinite sequence of distinct positive integers, neither of which contains digit $0$ in the decimal expansion, then $$\sum_{n=1}^{\infty} \frac{1}{a_n}< 29.$$

2022 Kyiv City MO Round 1, Problem 1

Represent $\frac{1}{2021}$ as a difference of two irreducible fractions with smaller denominators. [i](Proposed by Bogdan Rublov)[/i]

1976 IMO, 3

A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where $[x]$ denotes the smallest integer $\leq x)$

2014 PUMaC Algebra A, 3

A function $f$ has its domain equal to the set of integers $0$, $1$, $\ldots$, $11$, and $f(n)\geq 0$ for all such $n$, and $f$ satisfies [list] [*]$f(0)=0$ [*]$f(6)=1$ [*]If $x\geq 0$, $y\geq 0$, and $x+y\leq 11$, then $f(x+y)=\tfrac{f(x)+f(y)}{1-f(x)f(y)}$.[/list] Find $f(2)^2+f(10)^2$.

2007 District Olympiad, 1

Tags: algebra
Three positive reals $x,y,z$ are given so that $xy=\frac{z-x+1}{y}=\frac{z+1}2.$ Prove that one of the numbers is the arithmetic mean of the other two.

2018 Vietnam Team Selection Test, 3

For every positive integer $n\ge 3$, let $\phi_n$ be the set of all positive integers less than and coprime to $n$. Consider the polynomial: $$P_n(x)=\sum_{k\in\phi_n} {x^{k-1}}.$$ a. Prove that $P_n(x)=(x^{r_n}+1)Q_n(x)$ for some positive integer $r_n$ and polynomial $Q_n(x)\in\mathbb{Z}[x]$ (not necessary non-constant polynomial). b. Find all $n$ such that $P_n(x)$ is irreducible over $\mathbb{Z}[x]$.

2016 BMT Spring, 2

Tags: algebra
Define $a \star b$ to be $2ab + a + b$. What is $((3 \star 4) \star 5) - (4 \star (5 \star 3))$ ?

2015 Mathematical Talent Reward Programme, SAQ: P 2

Tags: algebra , logarithm
Let $x, y$ be numbers in the interval (0,1) such that for some $a>0, a \neq 1$ $$\log _{x} a+\log _{y} a=4 \log _{x y} a$$Prove that $x=y$