This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1975 Dutch Mathematical Olympiad, 1

Tags: algebra
Are the following statements true? $x^7 \in Q \land x^{12} \in Q \Rightarrow x \in Q$, and $x^9 \in \land x^{12} \in Q \Rightarrow x \in Q$.

2003 Czech-Polish-Slovak Match, 1

Given an integer $n \ge 2$, solve in real numbers the system of equations \begin{align*} \max\{1, x_1\} &= x_2 \\ \max\{2, x_2\} &= 2x_3 \\ &\cdots \\ \max\{n, x_n\} &= nx_1. \\ \end{align*}

2017 Abels Math Contest (Norwegian MO) Final, 1a

Find all functions $f : R \to R$ which satisfy $f(x)f(y) = f(xy) + xy$ for all $x, y \in R$.

2020 ABMC, Team

[u]Round 5[/u] [b]5.1.[/b] Quadrilateral $ABCD$ is such that $\angle ABC = \angle ADC = 90^o$ , $\angle BAD = 150^o$ , $AD = 3$, and $AB = \sqrt3$. The area of $ABCD$ can be expressed as $p\sqrt{q}$ for positive integers $p, q$ where $q$ is not divisible by the square of any prime. Find $p + q$. [b]5.2.[/b] Neetin wants to gamble, so his friend Akshay describes a game to him. The game will consist of three dice: a $100$-sided one with the numbers $1$ to $100$, a tetrahedral one with the numbers $1$ to $4$, and a normal $6$-sided die. If Neetin rolls numbers with a product that is divisible by $21$, he wins. Otherwise, he pays Akshay $100$ dollars. The number of dollars that Akshay must pay Neetin for a win in order to make this game fair is $a/b$ for relatively prime positive integers $a, b$. Find $a + b$. (Fair means the expected net gain is $0$. ) [b]5.3.[/b] What is the sum of the fourth powers of the roots of the polynomial $P(x) = x^2 + 2x + 3$? [u]Round 6[/u] [b]6.1.[/b] Consider the set $S = \{1, 2, 3, 4,..., 25\}$. How many ordered $n$-tuples $S_1 = (a_1, a_2, a_3,..., a_n)$ of pairwise distinct ai exist such that $a_i \in S$ and $i^2 | a_i$ for all $1 \le i \le n$? [b]6.2.[/b] How many ways are there to place $2$ identical rooks and $ 1$ queen on a $ 4 \times 4$ chessboard such that no piece attacks another piece? (A queen can move diagonally, vertically or horizontally and a rook can move vertically or horizontally) [b]6.3.[/b] Let $L$ be an ordered list $\ell_1$, $\ell_2$, $...$, $\ell_{36}$ of consecutive positive integers who all have the sum of their digits not divisible by $11$. It is given that $\ell_1$ is the least element of $L$. Find the least possible value of $\ell_1$. [u]Round 7[/u] [b]7.1.[/b] Spencer, Candice, and Heather love to play cards, but they especially love the highest cards in the deck - the face cards (jacks, queens, and kings). They also each have a unique favorite suit: Spencer’s favorite suit is spades, Candice’s favorite suit is clubs, and Heather’s favorite suit is hearts. A dealer pulls out the $9$ face cards from every suit except the diamonds and wants to deal them out to the $3$ friends. How many ways can he do this so that none of the $3$ friends will see a single card that is part of their favorite suit? [b]7.2.[/b] Suppose a sequence of integers satisfies the recurrence $a_{n+3} = 7a_{n+2} - 14a_{n+1} + 8a_n$. If $a_0 = 4$, $a_1 = 9$, and $a_2 = 25$, find $a_{16}$. Your answer will be in the form $2^a + 2^b + c$, where $2^a < a_{16} < 2^{a+1}$ and $b$ is as large as possible. Find $a + b + c$. [b]7.3.[/b] Parallel lines $\ell_1$ and $\ell_2$ are $1$ unit apart. Unit square $WXYZ$ lies in the same plane with vertex $W$ on $\ell_1$. Line $\ell_2$ intersects segments $YX$ and $YZ$ at points $U$ and $O$, respectively. Given $UO =\frac{9}{10}$, the inradius of $\vartriangle YOU$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$. [u]Round 8[/u] [b]8.[/b] Let $A$ be the number of contestants who participated in at least one of the three rounds of the 2020 ABMC April contest. Let $B$ be the number of times the letter b appears in the Accuracy Round. Let $M$ be the number of people who submitted both the speed and accuracy rounds before 2:00 PM EST. Further, let $C$ be the number of times the letter c appears in the Speed Round. Estimate $$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766239p24226402]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Czech-Polish-Slovak Match, 5

Find the number of sequences $(a_n)_{n=1}^\infty$ of integers satisfying $a_n \ne -1$ and \[a_{n+2} =\frac{a_n + 2006}{a_{n+1} + 1}\] for each $n \in \mathbb{N}$.

Dumbest FE I ever created, 7.

Tags: algebra , sus , function
Find all function $f : \mathbb{R} \to \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ . $$f(x+f(y))+f(x+y)=2x+f(y)+f(f(y))$$ . [hide=Original]$$f(x+f(y))+f(x+y)=2x+f(y)+y$$[/hide]

2023 LMT Spring, 8

Tags: algebra
Ephramis taking his final exams. He has $7$ exams and his school holds finals over $3$ days. For a certain arrangement of finals, let $f$ be the maximum number of finals Ephram takes on any given day. Find the expected value of $f$ .

2005 Gheorghe Vranceanu, 2

Three natural numbers $ a,b,c $ with $ \gcd (a,b) =1 $ define in the Diophantine plane a line $ d: ax+by-c=0. $ Prove that: [b]a)[/b] the distance between any two points from $ d $ is at least $ \sqrt{a^2+b^2} . $ [b]b)[/b] the restriction of $ d $ to the first quadrant of the Diophantine plane is a finite line having at most $ 1+\frac{c}{ab} $ elements.

2019 PUMaC Algebra B, 4

Let $f(x)=x^2+4x+2$. Let $r$ be the difference between the largest and smallest real solutions of the equation $f(f(f(f(x))))=0$. Then $r=a^{\frac{p}{q}}$ for some positive integers $a$, $p$, $q$ so $a$ is square-free and $p,q$ are relatively prime positive integers. Compute $a+p+q$.

2007 ITest, 22

Tags: algebra
Find the value of $c$ such that the system of equations \begin{align*}|x+y|&=2007,\\|x-y|&=c\end{align*} has exactly two solutions $(x,y)$ in real numbers. $\begin{array}{@{\hspace{-1em}}l@{\hspace{14em}}l@{\hspace{14em}}l} \textbf{(A) }0&\textbf{(B) }1&\textbf{(C) }2\\\\ \textbf{(D) }3&\textbf{(E) }4&\textbf{(F) }5\\\\ \textbf{(G) }6&\textbf{(H) }7&\textbf{(I) }8\\\\ \textbf{(J) }9&\textbf{(K) }10&\textbf{(L) }11\\\\ \textbf{(M) }12&\textbf{(N) }13&\textbf{(O) }14\\\\ \textbf{(P) }15&\textbf{(Q) }16&\textbf{(R) }17\\\\ \textbf{(S) }18&\textbf{(T) }223&\textbf{(U) }678\\\\ \textbf{(V) }2007 & &\end{array}$

2006 Taiwan National Olympiad, 2

Find all reals $x$ satisfying $0 \le x \le 5$ and $\lfloor x^2-2x \rfloor = \lfloor x \rfloor ^2 - 2 \lfloor x \rfloor$.

2015 Tuymaada Olympiad, 1

On the football training there was $n$ footballers - forwards and goalkeepers. They made $k$ goals. Prove that main trainer can give for every footballer squad number from $1$ to $n$ such, that for every goal the difference between squad number of forward and squad number of goalkeeper is more than $n-k$. [i](S. Berlov)[/i]

2020 Iran Team Selection Test, 5

For every positive integer $k>1$ prove that there exist a real number $x$ so that for every positive integer $n<1398$: $$\left\{x^n\right\}<\left\{x^{n-1}\right\} \Longleftrightarrow k\mid n.$$ [i]Proposed by Mohammad Amin Sharifi[/i]

2022 South East Mathematical Olympiad, 3

If $x_i$ is an integer greater than 1, let $f(x_i)$ be the greatest prime factor of $x_i,x_{i+1} =x_i-f(x_i)$ ($i\ge 0$ and i is an integer). (1) Prove that for any integer $x_0$ greater than 1, there exists a natural number$k(x_0)$, such that $x_{k(x_0)+1}=0$ Grade 10: (2) Let $V_{(x_0)}$ be the number of different numbers in $f(x_0),f(x_1),\cdots,f(x_{k(x_0)})$. Find the largest number in $V(2),V(3),\cdots,V(781)$ and give reasons. Note: Bai Lu Zhou Academy was founded in 1241 and has a history of 781 years. Grade 11: (2) Let $V_{(x_0)}$ be the number of different numbers in $f(x_0),f(x_1),\cdots,f(x_{k(x_0)})$. Find the largest number in $V(2),V(3),\cdots,V(2022)$ and give reasons.

1996 Vietnam National Olympiad, 1

Tags: function , algebra
Find all $ f: \mathbb{N}\to\mathbb{N}$ so that : $ f(n) \plus{} f(n \plus{} 1) \equal{} f(n \plus{} 2)f(n \plus{} 3) \minus{} 1996$

2022 SAFEST Olympiad, 1

Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?

1998 Finnish National High School Mathematics Competition, 3

Consider the geometric sequence $1/2, \ 1 / 4, \ 1 / 8,...$ Can one choose a subsequence, finite or infinite, for which the ratio of consecutive terms is not $1$ and whose sum is $1/5?$

1980 All Soviet Union Mathematical Olympiad, 286

The load for the space station "Salute" is packed in containers. There are more than $35$ containers, and the total weight is $18$ metric tons. There are $7$ one-way transport spaceships "Progress", each able to bring $3$ metric tons to the station. It is known that they are able to take an arbitrary subset of $35$ containers. Prove that they are able to take all the load.

2010 Germany Team Selection Test, 1

Tags: algebra
A sequence $\left(a_n\right)$ with $a_1 = 1$ satisfies the following recursion: In the decimal expansion of $a_n$ (without trailing zeros) let $k$ be the smallest digest then $a_{n+1} = a_n + 2^k.$ How many digits does $a_{9 \cdot 10^{2010}}$ have in the decimal expansion?

1988 All Soviet Union Mathematical Olympiad, 471

Find all positive integers $n$ satisfying $\left(1 +\frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{1998}\right)^{1998}$.

2018 Thailand Mathematical Olympiad, 4

Let $a, b, c$ be nonzero real numbers such that $a + b + c = 0$. Determine the maximum possible value of $\frac{a^2b^2c^2}{ (a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2)}$ .

2009 Iran Team Selection Test, 3

Suppose that $ a$,$ b$,$ c$ be three positive real numbers such that $ a\plus{}b\plus{}c\equal{}3$ . Prove that : $ \frac{1}{2\plus{}a^{2}\plus{}b^{2}}\plus{}\frac{1}{2\plus{}b^{2}\plus{}c^{2}}\plus{}\frac{1}{2\plus{}c^{2}\plus{}a^{2}} \leq \frac{3}{4}$

1969 Bulgaria National Olympiad, Problem 5

Prove the equality $$\prod_{k=1}^{2m}\cos\frac{k\pi}{2m+1}=\frac{(-1)^m}{4m}.$$

2012 India Regional Mathematical Olympiad, 2

Let $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0$ be a polynomial of degree $n\geq 3.$ Knowing that $a_{n-1}=-\binom{n}{1}$ and $a_{n-2}=\binom{n}{2},$ and that all the roots of $P$ are real, find the remaining coefficients. Note that $\binom{n}{r}=\frac{n!}{(n-r)!r!}.$

1982 All Soviet Union Mathematical Olympiad, 328

Every member, starting from the third one, of two sequences $\{a_n\}$ and $\{b_n\}$ equals to the sum of two preceding ones. First members are: $a_1 = 1, a_2 = 2, b_1 = 2, b_2 = 1$. How many natural numbers are encountered in both sequences (may be on the different places)?