This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2015 Mexico National Olympiad, 5

Let $I$ be the incenter of an acute-angled triangle $ABC$. Line $AI$ cuts the circumcircle of $BIC$ again at $E$. Let $D$ be the foot of the altitude from $A$ to $BC$, and let $J$ be the reflection of $I$ across $BC$. Show $D$, $J$ and $E$ are collinear.

2005 Romania National Olympiad, 1

Let $n$ be a positive integer, $n\geq 2$. For each $t\in \mathbb{R}$, $t\neq k\pi$, $k\in\mathbb{Z}$, we consider the numbers \[ x_n(t) = \sum_{k=1}^n k(n-k)\cos{(tk)} \textrm{ and } y_n(t) = \sum_{k=1}^n k(n-k)\sin{(tk)}. \] Prove that if $x_n(t) = y_n(t) =0$ if and only if $\tan {\frac {nt}2} = n \tan {\frac t2}$. [i]Constantin Buse[/i]

1996 Austrian-Polish Competition, 4

Real numbers $x,y,z, t$ satisfy $x + y + z +t = 0$ and $x^2+ y^2+ z^2+t^2 = 1$. Prove that $- 1 \le xy + yz + zt + tx \le 0$.

2021 Saudi Arabia IMO TST, 6

Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying \[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\] for all integers $a$ and $b$

2006 Macedonia National Olympiad, 2

Tags: algebra , function
Determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x, y, z,$ \[f(x+y^2+z)=f(f(x))+yf(y)+f(z). \]

2018 Hanoi Open Mathematics Competitions, 5

Let $f$ be a polynomial such that, for all real number $x$, $f(-x^2-x-1) = x^4 + 2x^3 + 2022x^2 + 2021x + 2019$. Compute $f(2018)$.

1962 All Russian Mathematical Olympiad, 019

Given a quartet of positive numbers $a,b,c,d$, and is known, that $abcd=1$. Prove that $$a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+dc \ge 10$$

2010 Germany Team Selection Test, 1

Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$. [i]Proposed by Juhan Aru, Estonia[/i]

2009 May Olympiad, 3

Tags: algebra
In the following sum: $1 + 2 + 3 + 4 + 5 + 6$, if we remove the first two “+” signs, we obtain the new sum $123 + 4 + 5 + 6 = 138$. By removing three “$+$” signs, we can obtain $1 + 23 + 456 = 480$. Let us now consider the sum $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13$, in which some “$+$” signs are to be removed. What are the three smallest multiples of $100$ that we can get in this way?

1974 IMO Shortlist, 1

Three players $A,B$ and $C$ play a game with three cards and on each of these $3$ cards it is written a positive integer, all $3$ numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number $(\geq 2)$ of games we find out that A has $20$ points, $B$ has $10$ points and $C$ has $9$ points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).

2015 Bangladesh Mathematical Olympiad, 3

Let $n$ be a positive integer.Consider the polynomial $p(x)=x^2+x+1$. What is the remainder of $ x^3$ when divided by $x^2+x+1$.For what positive integers values of $n$ is $ x^{2n}+x^n+1$ divisible by $p(x)$? Post no:[size=300]$100$[/size]

2013 Singapore Junior Math Olympiad, 1

Tags: sum , algebra
Let $a<b<c<d<e$ be real numbers. Among the $10$ sums of the pairs of these numbers, the least $3$ are $32,36,37$, while the largest two are $48$ and $51$. Find all possible values of $e$

JOM 2024, 3

Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $x, y\in\mathbb{R}^+$, \[ \frac{f(x)}{y^2} - \frac{f(y)}{x^2} \le \left(\frac{1}{x}-\frac{1}{y}\right)^2\] ($\mathbb{R}^+$ denotes the set of positive real numbers.) [i](Proposed by Ivan Chan Guan Yu)[/i]

2005 Thailand Mathematical Olympiad, 6

Let $a, b, c$ be distinct real numbers. Prove that $$\left(\frac{2a - b}{a -b} \right)^2+\left(\frac{2b - c}{b - c} \right)^2+\left(\frac{2c - a}{c - a} \right)^2 \ge 5$$

1994 India National Olympiad, 6

Find all real-valued functions $f$ on the reals such that $f(-x) = -f(x)$, $f(x+1) = f(x) + 1$ for all $x$, and $f\left(\dfrac{1}{x}\right) = \dfrac{f(x)}{x^2}$ for $x \not = 0$.

2020-2021 Fall SDPC, 8

Tags: algebra
Let $\mathbb{R}$ denote the set of all real numbers. Find all functions $f$ from $\mathbb{R}$ to $\mathbb{R}$ such that \[x^2f(x^2+y^2)+y^4=(xf(x+y)+y^2)(xf(x-y)+y^2)\] for all $x,y \in \mathbb{R}$.

1974 IMO Longlists, 8

Let $x, y, z$ be real numbers each of whose absolute value is different from $\frac{1}{\sqrt 3}$ such that $x + y + z = xyz$. Prove that \[\frac{3x - x^3}{1-3x^2} + \frac{3y - y^3}{1-3y^2} + \frac{3z -z^3}{1-3z^2} = \frac{3x - x^3}{1-3x^2} \cdot \frac{3y - y^3}{1-3y^2} \cdot \frac{3z - z^3}{1-3z^2}\]

1983 AMC 12/AHSME, 20

If $\tan{\alpha}$ and $\tan{\beta}$ are the roots of $x^2 - px + q = 0$, and $\cot{\alpha}$ and $\cot{\beta}$ are the roots of $x^2 - rx + s = 0$, then $rs$ is necessarily $\text{(A)} \ pq \qquad \text{(B)} \ \frac{1}{pq} \qquad \text{(C)} \ \frac{p}{q^2} \qquad \text{(D)} \ \frac{q}{p^2} \qquad \text{(E)} \ \frac{p}{q}$

VII Soros Olympiad 2000 - 01, 10.3

Tags: algebra , function
Let $y = f (x)$ be a convex function defined on $[0,1]$, $f (0) = 0,$ $f (1) = 0$. It is also known that the area of ​​the segment bounded by this function and the segment $[0, 1]$ is equal to $1$. Find and draw the set of points of the coordinate plane through which the graph of such a function can pass. (A function is called convex if all points of the line segment connecting any two points on its graph are located no higher than the graph of this function.)

2014 India PRMO, 5

If real numbers $a, b, c, d, e$ satisfy $a + 1 = b + 2 = c + 3 = d + 4 = e + 5 = a + b + c + d + e + 3$, what is the value of $a^2 + b^2 + c^2 + d^2 + e^2$ ?

1996 Abels Math Contest (Norwegian MO), 2

Prove that $[\sqrt{n}+\sqrt{n+1}]=[\sqrt{4n+1}]$ for all $n \in N$.

2007 India IMO Training Camp, 1

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula \[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0; \]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large. [i]Proposed by Harmel Nestra, Estionia[/i]

1988 IMO Longlists, 1

An integer sequence is defined by \[{ a_n = 2 a_{n-1} + a_{n-2}}, \quad (n > 1), \quad a_0 = 0, a_1 = 1.\] Prove that $2^k$ divides $a_n$ if and only if $2^k$ divides $n$.

2019 Thailand TST, 1

Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$

2020 BMT Fall, 17

Let $T$ be the answer to question $16$. Compute the number of distinct real roots of the polynomial $x^4 + 6x^3 +\frac{T}{2}x^2 + 6x + 1$.