This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2017 VTRMC, 5

Tags: algebra
Let $ f ( x , y ) = ( x + y ) / 2 , g ( x , y ) = \sqrt { x y } , h ( x , y ) = 2 x y / ( x + y ) $, and let $$ S = \{ ( a , b ) \in \mathrm { N } \times \mathrm { N } | a \neq b \text { and } f( a , b ) , g ( a , b ) , h ( a , b ) \in \mathrm { N } \} $$ where $\mathbb{N}$ denotes the positive integers. Find the minimum of $f$ over $S$.

2020 AMC 12/AHSME, 17

How many polynomials of the form $x^5 + ax^4 + bx^3 + cx^2 + dx + 2020$, where $a$, $b$, $c$, and $d$ are real numbers, have the property that whenever $r$ is a root, so is $\frac{-1+i\sqrt{3}}{2} \cdot r$? (Note that $i=\sqrt{-1}$) $\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) } 2 \qquad \textbf{(D) } 3 \qquad \textbf{(E) } 4$

1999 AMC 12/AHSME, 12

What is the maximum number of points of intersection of the graphs of two different fourth degree polynomial functions $ y \equal{} p(x)$ and $ y \equal{} q(x)$, each with leading coefficient $ 1$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8$

1995 China Team Selection Test, 2

$ A$ and $ B$ play the following game with a polynomial of degree at least 4: \[ x^{2n} \plus{} \_x^{2n \minus{} 1} \plus{} \_x^{2n \minus{} 2} \plus{} \ldots \plus{} \_x \plus{} 1 \equal{} 0 \] $ A$ and $ B$ take turns to fill in one of the blanks with a real number until all the blanks are filled up. If the resulting polynomial has no real roots, $ A$ wins. Otherwise, $ B$ wins. If $ A$ begins, which player has a winning strategy?

2019 IMO Shortlist, A3

Tags: sequence , algebra
Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of $n$ positive real numbers with sum equal to 2. Let $X$ be a subset of $\{1,2, \ldots, n\}$ such that the value of \[ \left|1-\sum_{i \in X} a_{i}\right| \] is minimised. Prove that there exists a strictly increasing sequence of $n$ positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that \[ \sum_{i \in X} b_{i}=1. \]

1966 IMO Longlists, 31

Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?

2007 Mathematics for Its Sake, 2

For a given natural number $ n\ge 2, $ find all $ \text{n-tuples} $ of nonnegative real numbers which have the property that each one of the numbers forming the $ \text{n-tuple} $ is the square of the sum of the other $ n-1 $ ones. [i]Mugur Acu[/i]

2016 All-Russian Olympiad, 7

All russian olympiad 2016,Day 2 ,grade 9,P8 : Let $a, b, c, d$ be are positive numbers such that $a+b+c+d=3$ .Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{a^2b^2c^2d^2}$$ All russian olympiad 2016,Day 2,grade 11,P7 : Let $a, b, c, d$ be are positive numbers such that $a+b+c+d=3$ .Prove that $$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\le\frac{1}{a^3b^3c^3d^3}$$ Russia national 2016

2018 Kazakhstan National Olympiad, 2

The natural number $m\geq 2$ is given.Sequence of natural numbers $(b_0,b_1,\ldots,b_m)$ is called concave if $b_k+b_{k-2}\le2b_{k-1}$ for all $2\le k\le m.$ Prove that there exist not greater than $2^m$ concave sequences starting with $b_0 =1$ or $b_0 =2$

2003 Czech-Polish-Slovak Match, 6

Tags: algebra , function
Find all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy the condition \[f(f(x) + y) = 2x + f(f(y) - x)\quad \text{ for all } x, y \in\mathbb{R}.\]

Russian TST 2019, P1

Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$

Kvant 2023, M2776

There are $n{}$ currencies in a country, numbered from 1 to $n{}.$ In each currency, only non-negative integers are possible amounts of money. A person can have only one currency at any time. A person can exchange all the money he has from currency $i{}$ to currency $j{}$ at the rate of $\alpha_{ij}$ which is a positive real number. If he had $d{}$ units of currency $i{}$ he instead receives $\alpha_{ij}d$ units of currency $j{}$ while this number is rounded to the nearest integer; a number of the form $t-1/2$ is rounded to $t{}$ for any integer $t{}.$ It is known that $\alpha_{ij}\alpha_{jk}=\alpha_{ik}$ and $\alpha_{ii}=1$ for every $i,j,k.$ Can there be a person who can get rich indefinitely? [i]Proposed by I. Bogdanov[/i]

2012 AMC 10, 17

Let $a$ and $b$ be relatively prime integers with $a>b>0$ and $\tfrac{a^3-b^3}{(a-b)^3}=\tfrac{73}{3}$. What is $a-b$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5 $

2011 Uzbekistan National Olympiad, 4

$A$ graph $G$ arises from $G_{1}$ and $G_{2}$ by pasting them along $S$ if $G$ has induced subgraphs $G_{1}$, $G_{2}$ with $G=G_{1}\cup G_{2}$ and $S$ is such that $S=G_{1}\cap G_{2}.$ A is graph is called [i]chordal[/i] if it can be constructed recursively by pasting along complete subgraphs, starting from complete subgraphs. For a graph $G(V,E)$ define its Hilbert polynomial $H_{G}(x)$ to be $H_{G}(x)=1+Vx+Ex^2+c(K_{3})x^3+c(K_{4})x^4+\ldots+c(K_{w(G)})x^{w(G)},$ where $c(K_{i})$ is the number of $i$-cliques in $G$ and $w(G)$ is the clique number of $G$. Prove that $H_{G}(-1)=0$ if and only if $G$ is chordal or a tree.

2017 Danube Mathematical Olympiad, 1

Find all polynomials $P(x)$ with integer coefficients such that $a^2+b^2-c^2$ divides $P(a)+P(b)-P(c)$, for all integers $a,b,c$.

1974 Czech and Slovak Olympiad III A, 4

Let $\mathcal M$ be the set of all polynomial functions $f$ of degree at most 3 such that \[\forall x\in[-1,1]:\ |f(x)|\le 1.\] Denote $a$ the (possibly zero) coefficient of $f$ at $x^3.$ Show that there is a positive number $k$ such that \[\forall f\in\mathcal M:\ |a|\le k\] and find the least $k$ with this property.

2006 ISI B.Math Entrance Exam, 2

Prove that there is no non-constant polynomial $P(x)$ with integer coefficients such that $P(n)$ is a prime number for all positive integers $n$.

2008 Costa Rica - Final Round, 3

Find all polinomials $ P(x)$ with real coefficients, such that $ P(\sqrt {3}(a \minus{} b)) \plus{} P(\sqrt {3}(b \minus{} c)) \plus{} P(\sqrt {3}(c \minus{} a)) \equal{} P(2a \minus{} b \minus{} c) \plus{} P( \minus{} a \plus{} 2b \minus{} c) \plus{} P( \minus{} a \minus{} b \plus{} 2c)$ for any $ a$,$ b$ and $ c$ real numbers

1997 Bulgaria National Olympiad, 1

Consider the polynomial $P_n(x) = \binom {n}{2}+\binom {n}{5}x+\binom {n}{8}x^2 + \cdots + \binom {n}{3k+2}x^{3k}$ where $n \ge 2$ is a natural number and $k = \left\lfloor \frac{n-2}{3} \right \rfloor$ [b](a)[/b] Prove that $P_{n+3}(x)=3P_{n+2}(x)-3P_{n+1}(x)+(x+1)P_n(x)$ [b](b)[/b] Find all integer numbers $a$ such that $P_n(a^3)$ is divisible by $3^{ \lfloor \frac{n-1}{2} \rfloor}$ for all $n \ge 2$

1985 Swedish Mathematical Competition, 1

If $a > b > 0$, prove the inequality $$\frac{(a-b)^2}{8a}< \frac{a+b}{2}- \sqrt{ab} < \frac{(a-b)^2}{8b}.$$

IV Soros Olympiad 1997 - 98 (Russia), 11.8

Tags: radical , algebra
Calculate $\sqrt{5,44...4}$ (the decimal point is followed by $100$ fours) with approximation to: a) $10^{-100}$, b) $10^{-200}$

1995 Portugal MO, 6

Prove that a real number $x$ is rational if and only if the sequence $x, x+1, x+2, x+3, ..., x+n, ...$ contains, at least least three terms in geometric progression.

2020 Dürer Math Competition (First Round), P5

Let $p$ be prime and $ k > 1$ be a divisor of $p-1$. Show that if a polynomial of degree $k$ with integer coefficients attains every possible value modulo $ p$ that is $(0,1,\dots, p-1)$ at integer inputs then its leading coefficient must be divisible by $p$. [hide=Note]Note: the leading coefficient of a polynomial of degree d is the coefficient of the $x_d$ term.[/hide]

1993 IberoAmerican, 3

Tags: function , algebra
Let $\mathbb{N}^*=\{1,2,\ldots\}$. Find al the functions $f: \mathbb{N}^*\rightarrow \mathbb{N}^*$ such that: (1) If $x<y$ then $f(x)<f(y)$. (2) $f\left(yf(x)\right)=x^2f(xy)$ for all $x,y \in\mathbb{N}^*$.

2014 Mid-Michigan MO, 10-12

[b]p1.[/b] The length of the side $AB$ of the trapezoid with bases $AD$ and $BC$ is equal to the sum of lengths $|AD|+|BC|$. Prove that bisectors of angles $A$ and $B$ do intersect at a point of the side $CD$. [b]p2.[/b] Polynomials $P(x) = x^4 + ax^3 + bx^2 + cx + 1$ and $Q(x) = x^4 + cx^3 + bx^2 + ax + 1$ have two common roots. Find these common roots of both polynomials. [b]p3.[/b] A girl has a box with $1000$ candies. Outside the box there is an infinite number of chocolates and muffins. A girl may replace: $\bullet$ two candies in the box with one chocolate bar, $\bullet$ two muffins in the box with one chocolate bar, $\bullet$ two chocolate bars in the box with one candy and one muffin, $\bullet$ one candy and one chocolate bar in the box with one muffin, $\bullet$ one muffin and one chocolate bar in the box with one candy. Is it possible that after some time it remains only one object in the box? [b]p4.[/b] There are $9$ straight lines drawn in the plane. Some of them are parallel some of them intersect each other. No three lines do intersect at one point. Is it possible to have exactly $17$ intersection points? [b]p5.[/b] It is known that $x$ is a real number such that $x+\frac{1}{x}$ is an integer. Prove that $x^n+\frac{1}{x^n}$ is an integer for any positive integer $n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].