This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2012 ISI Entrance Examination, 4

Prove that the polynomial equation $x^{8}-x^{7}+x^{2}-x+15=0$ has no real solution.

2020 Baltic Way, 4

Find all functions $f:\mathbb{R} \to \mathbb{R}$ so that \[f(f(x)+x+y) = f(x+y) + y f(y)\] for all real numbers $x, y$.

1962 Bulgaria National Olympiad, Problem 1

Tags: algebra
It is given the expression $y=\frac{x^2-2x+1}{x^2-2x+2}$, where $x$ is a variable. Prove that: (a) if $x_1$ and $x_2$ are two values of $x$, the $y_1$ and $y_2$ are the respective values of $y$ only if $x_1<x_2$, $y_1<y_2$; (b) when $x$ is varying $y$ attains all possible values for which $0\le y<1$.

2013 Uzbekistan National Olympiad, 3

Tags: function , algebra
Find all functions $f:Q\rightarrow Q$ such that \[ f(x+y)+f(y+z)+f(z+t)+f(t+x)+f(x+z)+f(y+t)\ge 6f(x-3y+5z+7t) \] for all $x,y,z,t\in Q.$

2019 IMO Shortlist, A6

A polynomial $P(x, y, z)$ in three variables with real coefficients satisfies the identities $$P(x, y, z)=P(x, y, xy-z)=P(x, zx-y, z)=P(yz-x, y, z).$$ Prove that there exists a polynomial $F(t)$ in one variable such that $$P(x,y,z)=F(x^2+y^2+z^2-xyz).$$

2013 ELMO Shortlist, 7

Let $p$ be a prime satisfying $p^2\mid 2^{p-1}-1$, and let $n$ be a positive integer. Define \[ f(x) = \frac{(x-1)^{p^n}-(x^{p^n}-1)}{p(x-1)}. \] Find the largest positive integer $N$ such that there exist polynomials $g(x)$, $h(x)$ with integer coefficients and an integer $r$ satisfying $f(x) = (x-r)^N g(x) + p \cdot h(x)$. [i]Proposed by Victor Wang[/i]

EMCC Speed Rounds, 2014

[i]25 problems for 30 minutes.[/i] [b]p1.[/b] Chad, Ravi, Kevin, and Meena are four of the $551$ residents of Chadwick, Illinois. Expressing your answer to the nearest percent, how much of the population do they represent? [b]p2.[/b] Points $A$, $B$, and $C$ are on a line for which $AB = 625$ and $BC = 256$. What is the sum of all possible values of the length $AC$? [b]p3.[/b] An increasing arithmetic sequence has first term $2014$ and common difference $1337$. What is the least odd term of this sequence? [b]p4.[/b] How many non-congruent scalene triangles with integer side lengths have two sides with lengths $3$ and $4$? [b]p5.[/b] Let $a$ and $b$ be real numbers for which the function $f(x) = ax^2+bx+3$ satisfies $f(0)+2^0 = f(1)+2^1 = f(2) + 2^2$. What is $f(0)$? [b]p6.[/b] A pentomino is a set of five planar unit squares that are joined edge to edge. Two pentominoes are considered the same if and only if one can be rotated and translated to be identical to the other. We say that a pentomino is compact if it can fit within a $2$ by $3$ rectangle. How many distinct compact pentominoes exist? [b]p7.[/b] Consider a hexagon with interior angle measurements of $91$, $101$, $107$, $116$, $152$, and $153$ degrees. What is the average of the interior angles of this hexagon, in degrees? [b]p8.[/b] What is the smallest positive number that is either one larger than a perfect cube and one less than a perfect square, or vice versa? [b]p9.[/b] What is the first time after $4:56$ (a.m.) when the $24$-hour expression for the time has three consecutive digits that form an increasing arithmetic sequence with difference $1$? (For example, $23:41$ is one of those moments, while $23:12$ is not.) [b]p10.[/b] Chad has trouble counting. He wants to count from $1$ to $100$, but cannot pronounce the word "three," so he skips every number containing the digit three. If he tries to count up to $100$ anyway, how many numbers will he count? [b]p11.[/b] In square $ABCD$, point $E$ lies on side $BC$ and point $F$ lies on side $CD$ so that triangle $AEF$ is equilateral and inside the square. Point $M$ is the midpoint of segment $EF$, and $P$ is the point other than $E$ on $AE$ for which $PM = FM$. The extension of segment $PM$ meets segment $CD$ at $Q$. What is the measure of $\angle CQP$, in degrees? [b]p12.[/b] One apple is five cents cheaper than two bananas, and one banana is seven cents cheaper than three peaches. How much cheaper is one apple than six peaches, in cents? [b]p13.[/b] How many ordered pairs of integers $(a, b)$ exist for which |a| and |b| are at most $3$, and $a^3-a = b^3-b$? [b]p14.[/b] Five distinct boys and four distinct girls are going to have lunch together around a table. They decide to sit down one by one under the following conditions: no boy will sit down when more boys than girls are already seated, and no girl will sit down when more girls than boys are already seated. How many possible sequences of taking seats exist? [b]p15.[/b] Jordan is swimming laps in a pool. For each lap after the first, the time it takes her to complete is five seconds more than that of the previous lap. Given that she spends 10 minutes on the first six laps, how long does she spend on the next six laps, in minutes? [b]p16.[/b] Chad decides to go to trade school to ascertain his potential in carpentry. Chad is assigned to cut away all the vertices of a wooden regular tetrahedron with sides measuring four inches. Each vertex is cut away by a plane which passes through the three midpoints of the edges adjacent to that vertex. What is the surface area of the resultant solid, in square inches? Note: A tetrahedron is a solid with four triangular faces. In a regular tetrahedron, these faces are all equilateral triangles. [b]p17.[/b] Chad and Jordan independently choose two-digit positive integers. The two numbers are then multiplied together. What is the probability that the result has a units digit of zero? [b]p18.[/b] For art class, Jordan needs to cut a circle out of the coordinate grid. She would like to find a circle passing through at least $16$ lattice points so that her cut is accurate. What is the smallest possible radius of her circle? Note: A lattice point is defined as one whose coordinates are both integers. For example, $(5, 8)$ is a lattice point whereas $(3.5, 5)$ is not. [b]p19.[/b] Chad's ant Arctica is on one of the eight corners of Chad's toolbox, which measures two decimeters in width, three decimeters in length, and four decimeters in height. One day, Arctica wanted to go to the opposite corner of this box. Assuming she can only crawl on the surface of the toolbox, what is the shortest distance she has to crawl to accomplish this task, in decimeters? (You may assume that the toolbox is oating in the Exeter Space Station, so that Arctica can crawl on all six faces.) [b]p20.[/b] Jordan is counting numbers for fun. She starts with the number $1$, and then counts onward, skipping any number that is a divisor of the product of all previous numbers she has said. For example, she starts by counting $1$, $2$, $3$, $4$, $5$, but skips 6, a divisor of $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$. What is the $20^{th}$ number she counts? [b]p21.[/b] Chad and Jordan are having a race in the lake shown below. The lake has a diameter of four kilometers and there is a circular island in the middle of the lake with a diameter of two kilometers. They start at one point on the edge of the lake and finish at the diametrically opposite point. Jordan makes the trip only by swimming in the water, while Chad swims to the island, runs across it, and then continues swimming. They both take the fastest possible route and, amazingly, they tie! Chad swims at two kilometers an hour and runs at five kilometers an hour. At what speed does Jordan swim? [img]https://cdn.artofproblemsolving.com/attachments/f/6/22b3b0bba97d25ab7aabc67d30821d0b12efc0.png[/img] [b]p22.[/b] Cameron has stolen Chad's barrel of oil and is driving it around on a truck on the coordinate grid on his truck. Cameron is a bad truck driver, so he can only move the truck forward one kilometer at a $4$ $EMC^2$ $2014$ Problems time along one of the gridlines. In fact, Cameron is so bad at driving the truck that between every two one-kilometer movements, he has to turn exactly $90$ degrees. After $50$ one-kilometer movements, given that Cameron's first one-kilometer movement was westward, how many points he could be on? [b]p23.[/b] Let $a$, $b$, and $c$ be distinct nonzero base ten digits. Assume there exist integers $x$ and $y$ for which $\overline{abc} \cdot \overline{cb} = 100x^2 + 1$ and $\overline{acb} \cdot \overline{bc} = 100y^2 + 1$. What is the minimum value of the number $\overline{abbc}$? Note: The notation $\overline{pqr}$ designates the number whose hundreds digit is $p$, tens digit is $q$, and units digit is $r$, not the product $p \cdot q \cdot r$. [b]p24.[/b] Let $r_1, r_2, r_3, r_4$ and $r_5$ be the five roots of the equation $x^5-4x^4+3x^2-2x+1 = 0$. What is the product of $(r_1 +r_2 +r_3 +r_4)$, $(r_1 +r_2 +r_3 +r_5)$, $(r_1 +r_2 +r_4 +r_5)$, $(r_1 +r_3 +r_4 +r_5)$, and $(r_2 +r_3 +r_4 +r_5)$? [b]p25.[/b] Chad needs seven apples to make an apple strudel for Jordan. He is currently at 0 on the metric number line. Every minute, he randomly moves one meter in either the positive or the negative direction with equal probability. Arctica's parents are located at $+4$ and $-4$ on the number line. They will bite Chad for kidnapping Arctica if he walks onto those numbers. Also, there is one apple located at each integer between $-3$ and $3$, inclusive. Whenever Chad lands on an integer with an unpicked apple, he picks it. What is the probability that Chad picks all the apples without getting bitten by Arctica's parents? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Canadian Mathematical Olympiad Qualification, 5

Let $f(x) = x^4 + 2x^3 - x - 1$. (a) Prove that $f(x)$ cannot be written as the product of two non-constant polynomials with integer coefficients. (b) Find the exact values of the 4 roots of $f(x)$.

2011 Iran Team Selection Test, 5

Tags: function , algebra
Find all surjective functions $f: \mathbb R \to \mathbb R$ such that for every $x,y\in \mathbb R,$ we have \[f(x+f(x)+2f(y))=f(2x)+f(2y).\]

2019 HMNT, 7

Tags: algebra
Consider sequences $a$ of the form $a = (a_1, a_2, ... , a_{20})$ such that each term $a_i$ is either $0$ or $1$. For each such sequence $a$, we can produce a sequence $b = (b_1, b_2, ..., b_{20})$, where $$b_i\begin{cases} a_i + a_{i+1} & i = 1 \\ a_{i-1} + a_i + a_{i+1} & 1 < i < 20\\ a_{i-1} + a_i &i = 20 \end{cases}$$

1977 IMO Longlists, 24

Determine all real functions $f(x)$ that are defined and continuous on the interval $(-1, 1)$ and that satisfy the functional equation \[f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \qquad (x, y, x + y \in (-1, 1)).\]

2013 Harvard-MIT Mathematics Tournament, 20

The polynomial $f(x)=x^3-3x^2-4x+4$ has three real roots $r_1$, $r_2$, and $r_3$. Let $g(x)=x^3+ax^2+bx+c$ be the polynomial which has roots $s_1$, $s_2$, and $s_3$, where $s_1=r_1+r_2z+r_3z^2$, $s_2=r_1z+r_2z^2+r_3$, $s_3=r_1z^2+r_2+r_3z$, and $z=\frac{-1+i\sqrt3}2$. Find the real part of the sum of the coefficients of $g(x)$.

2010 CHMMC Winter, Individual

[b]p1.[/b] Compute the degree of the least common multiple of the polynomials $x - 1$, $x^2 - 1$, $x^3 - 1$,$...$, $x^{10} -1$. [b]p2.[/b] A line in the $xy$ plane is called wholesome if its equation is $y = mx+b$ where $m$ is rational and $b$ is an integer. Given a point with integer coordinates $(x,y)$ on a wholesome line $\ell$, let $r$ be the remainder when $x$ is divided by $7$, and let $s$ be the remainder when y is divided by $7$. The pair $(r, s)$ is called an [i]ingredient[/i] of the line $\ell$. The (unordered) set of all possible ingredients of a wholesome line $\ell$ is called the [i]recipe [/i] of $\ell$. Compute the number of possible recipes of wholesome lines. [b]p3.[/b] Let $\tau (n)$ be the number of distinct positive divisors of $n$. Compute $\sum_{d|15015} \tau (d)$, that is, the sum of $\tau (d)$ for all $d$ such that $d$ divides $15015$. [b]p4.[/b] Suppose $2202010_b - 2202010_3 = 71813265_{10}$. Compute $b$. ($n_b$ denotes the number $n$ written in base $b$.) [b]p5.[/b] Let $x = (3 -\sqrt5)/2$. Compute the exact value of $x^8 + 1/x^8$. [b]p6.[/b] Compute the largest integer that has the same number of digits when written in base $5$ and when written in base $7$. Express your answer in base $10$. [b]p7.[/b] Three circles with integer radii $a$, $b$, $c$ are mutually externally tangent, with $a \le b \le c$ and $a < 10$. The centers of the three circles form a right triangle. Compute the number of possible ordered triples $(a, b, c)$. [b]p8.[/b] Six friends are playing informal games of soccer. For each game, they split themselves up into two teams of three. They want to arrange the teams so that, at the end of the day, each pair of players has played at least one game on the same team. Compute the smallest number of games they need to play in order to achieve this. [b]p9.[/b] Let $A$ and $B$ be points in the plane such that $AB = 30$. A circle with integer radius passes through $A$ and $B$. A point $C$ is constructed on the circle such that $AC$ is a diameter of the circle. Compute all possible radii of the circle such that $BC$ is a positive integer. [b]p10.[/b] Each square of a $3\times 3$ grid can be colored black or white. Two colorings are the same if you can rotate or reflect one to get the other. Compute the total number of unique colorings. [b]p11.[/b] Compute all positive integers $n$ such that the sum of all positive integers that are less than $n$ and relatively prime to $n$ is equal to $2n$. [b]p12.[/b] The distance between a point and a line is defined to be the smallest possible distance between the point and any point on the line. Triangle $ABC$ has $AB = 10$, $BC = 21$, and $CA = 17$. Let $P$ be a point inside the triangle. Let $x$ be the distance between $P$ and $\overleftrightarrow{BC}$, let $y$ be the distance between $P$ and $\overleftrightarrow{CA}$, and let $z$ be the distance between $P$ and $\overleftrightarrow{AB}$. Compute the largest possible value of the product $xyz$. [b]p13.[/b] Alice, Bob, David, and Eve are sitting in a row on a couch and are passing back and forth a bag of chips. Whenever Bob gets the bag of chips, he passes the bag back to the person who gave it to him with probability $\frac13$ , and he passes it on in the same direction with probability $\frac23$ . Whenever David gets the bag of chips, he passes the bag back to the person who gave it to him with probability $\frac14$ , and he passes it on with probability $\frac34$ . Currently, Alice has the bag of chips, and she is about to pass it to Bob when Cathy sits between Bob and David. Whenever Cathy gets the bag of chips, she passes the bag back to the person who gave it to her with probability $p$, and passes it on with probability $1-p$. Alice realizes that because Cathy joined them on the couch, the probability that Alice gets the bag of chips back before Eve gets it has doubled. Compute $p$. [b]p14.[/b] Circle $O$ is in the plane. Circles $A$, $B$, and $C$ are congruent, and are each internally tangent to circle $O$ and externally tangent to each other. Circle $X$ is internally tangent to circle $O$ and externally tangent to circles $A$ and $B$. Circle $X$ has radius $1$. Compute the radius of circle $O$. [img]https://cdn.artofproblemsolving.com/attachments/f/d/8ddab540dca0051f660c840c0432f9aa5fe6b0.png[/img] [b]p15.[/b] Compute the number of primes $p$ less than 100 such that $p$ divides $n^2 +n+1$ for some integer $n$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Iran MO (3rd Round), 4

Suppose $f(z)=z^n+a_1z^{n-1}+...+a_n$ for which $a_1,a_2,...,a_n\in \mathbb C$. Prove that the following polynomial has only one positive real root like $\alpha$ \[x^n+\Re(a_1)x^{n-1}-|a_2|x^{n-2}-...-|a_n|\] and the following polynomial has only one positive real root like $\beta$ \[x^n-\Re(a_1)x^{n-1}-|a_2|x^{n-2}-...-|a_n|.\] And roots of the polynomial $f(z)$ satisfy $-\beta \le \Re(z) \le \alpha$.

2021 Science ON all problems, 3

Real numbers $a,b,c$ with $0\le a,b,c\le 1$ satisfy the condition $$a+b+c=1+\sqrt{2(1-a)(1-b)(1-c)}.$$ Prove that $$\sqrt{1-a^2}+\sqrt{1-b^2}+\sqrt{1-c^2}\le \frac{3\sqrt 3}{2}.$$ [i] (Nora Gavrea)[/i]

1987 Romania Team Selection Test, 5

Let $A$ be the set $\{1,2,\ldots,n\}$, $n\geq 2$. Find the least number $n$ for which there exist permutations $\alpha$, $\beta$, $\gamma$, $\delta$ of the set $A$ with the property: \[ \sum_{i=1}^n \alpha(i) \beta (i) = \dfrac {19}{10} \sum^n_{i=1} \gamma(i)\delta(i) . \] [i]Marcel Chirita[/i]

2018 Iran MO (3rd Round), 4

Let $P(x)$ be a non-zero polynomial with real coefficient so that $P(0)=0$.Prove that for any positive real number $M$ there exist a positive integer $d$ so that for any monic polynomial $Q(x)$ with degree at least $d$ the number of integers $k$ so that $|P(Q(k))| \le M$ is at most equal to the degree of $Q$.

2003 Rioplatense Mathematical Olympiad, Level 3, 2

Let $n$ and $k$ be positive integers. Consider $n$ infinite arithmetic progressions of nonnegative integers with the property that among any $k$ consecutive nonnegative integers, at least one of $k$ integers belongs to one of the $n$ arithmetic progressions. Let $d_1,d_2,\ldots,d_n$ denote the differences of the arithmetic progressions, and let $d=\min\{d_1,d_2,\ldots,d_n\}$. In terms of $n$ and $k$, what is the maximum possible value of $d$?

2006 Vietnam National Olympiad, 5

Find all polynomyals $P(x)$ with real coefficients which satisfy the following equality for all real numbers $x$: \[ P(x^2)+x(3P(x)+P(-x))=(P(x))^2+2x^2 . \]

2004 All-Russian Olympiad Regional Round, 10.1

The sum of positive numbers $a, b, c$ is equal to $\pi/2$. Prove that $$\cos a + \cos b + \cos c > \sin a + \sin b + \sin c.$$

2022 Korea Junior Math Olympiad, 4

Find all function $f:\mathbb{N} \longrightarrow \mathbb{N}$ such that forall positive integers $x$ and $y$, $\frac{f(x+y)-f(x)}{f(y)}$ is again a positive integer not exceeding $2022^{2022}$.

2018 Germany Team Selection Test, 1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$ If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$ has no positive roots.

2000 Portugal MO, 4

Calculates the sum of all numbers that can be formed using each of the odd digits once, that is, the numbers $13579$, $13597$, ..., $97531$.

2017 Saudi Arabia BMO TST, 1

Let $a, b, c$ be positive real numbers. Prove that $$\frac{a(b^2 + c^2)}{(b + c)(a^2 + bc)} + \frac{b(c^2 + a^2)}{(c + a)(b^2 + ca)} + \frac{c(a^2 + b^2)}{(a + b)(c^2 + ab)} \ge \frac32$$

1997 Romania National Olympiad, 2

Let $n\geq 3$ be a natural number and $x\in \mathbb{R}$, for which $\{ x\} =\{ x^2\} =\{ x^n\} $ (with $\{ x\} $ we denote the fractional part of $x$). Prove that $x$ is an integer.