Found problems: 15925
1996 IMO Shortlist, 7
Let $ f$ be a function from the set of real numbers $ \mathbb{R}$ into itself such for all $ x \in \mathbb{R},$ we have $ |f(x)| \leq 1$ and
\[ f \left( x \plus{} \frac{13}{42} \right) \plus{} f(x) \equal{} f \left( x \plus{} \frac{1}{6} \right) \plus{} f \left( x \plus{} \frac{1}{7} \right).\]
Prove that $ f$ is a periodic function (that is, there exists a non-zero real number $ c$ such $ f(x\plus{}c) \equal{} f(x)$ for all $ x \in \mathbb{R}$).
1964 Miklós Schweitzer, 2
Let $ p$ be a prime and let \[ l_k(x,y)\equal{}a_kx\plus{}b_ky \;(k\equal{}1,2,...,p^2)\ .\] be homogeneous linear polynomials with integral coefficients. Suppose that for every pair $ (\xi,\eta)$ of integers, not both divisible by $ p$, the values $ l_k(\xi,\eta), \;1\leq k\leq p^2 $, represent every residue class $ \textrm{mod} \;p$ exactly $ p$ times. Prove that the set of pairs $ \{(a_k,b_k): 1\leq k \leq p^2 \}$ is identical $ \textrm{mod} \;p$ with the set $ \{(m,n): 0\leq m,n \leq p\minus{}1 \}.$
1991 Austrian-Polish Competition, 4
Let $P(x)$ be a real polynomial with $P(x) \ge 0$ for $0 \le x \le 1$. Show that there exist polynomials $P_i (x) (i = 0, 1,2)$ with $P_i (x) \ge 0$ for all real x such that $P (x) = P_0 (x) + xP_1 (x)( 1- x)P_2 (x)$.
1997 China Team Selection Test, 3
Prove that there exists $m \in \mathbb{N}$ such that there exists an integral sequence $\lbrace a_n \rbrace$ which satisfies:
[b]I.[/b] $a_0 = 1, a_1 = 337$;
[b]II.[/b] $(a_{n + 1} a_{n - 1} - a_n^2) + \frac{3}{4}(a_{n + 1} + a_{n - 1} - 2a_n) = m, \forall$ $n \geq 1$;
[b]III. [/b]$\frac{1}{6}(a_n + 1)(2a_n + 1)$ is a perfect square $\forall$ $n \geq 1$.
2004 Thailand Mathematical Olympiad, 7
Let f be a function such that $f(0) = 0, f(1) = 1$, and $f(n) = 2f(n-1)- f(n- 2) + (-1)^n(2n - 4)$ for all integers $n \ge 2$. Find f(n) in terms of $n$.
2009 Stanford Mathematics Tournament, 8
Simplify $\sum_{k=1}^{n}\frac{k^2(k - n)}{n^4}$
2021 Princeton University Math Competition, A6 / B8
Let $f$ be a polynomial. We say that a complex number $p$ is a double attractor if there exists a polynomial $h(x)$ so that $f(x)-f(p) = h(x)(x-p)^2$ for all x \in R. Now, consider the polynomial $$f(x) = 12x^5 - 15x^4 - 40x^3 + 540x^2 - 2160x + 1,$$ and suppose that it’s double attractors are $a_1, a_2, ... , a_n$. If the sum $\sum^{n}_{i=1}|a_i|$ can be written as $\sqrt{a} +\sqrt{b}$, where $a, b$ are positive integers, find $a + b$.
2015 Canada National Olympiad, 1
Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of positive integers. Find all functions $f$, defined on $\mathbb{N}$ and taking values in $\mathbb{N}$, such that $(n-1)^2< f(n)f(f(n)) < n^2+n$ for every positive integer $n$.
1982 IMO Shortlist, 7
Let $p(x)$ be a cubic polynomial with integer coefficients with leading coefficient $1$ and with one of its roots equal to the product of the other two. Show that $2p(-1)$ is a multiple of $p(1)+p(-1)-2(1+p(0)).$
1988 IMO Longlists, 77
A function $ f$ defined on the positive integers (and taking positive integers values) is given by:
$ \begin{matrix} f(1) \equal{} 1, f(3) \equal{} 3 \\
f(2 \cdot n) \equal{} f(n) \\
f(4 \cdot n \plus{} 1) \equal{} 2 \cdot f(2 \cdot n \plus{} 1) \minus{} f(n) \\
f(4 \cdot n \plus{} 3) \equal{} 3 \cdot f(2 \cdot n \plus{} 1) \minus{} 2 \cdot f(n), \end{matrix}$
for all positive integers $ n.$ Determine with proof the number of positive integers $ \leq 1988$ for which $ f(n) \equal{} n.$
2013 Balkan MO Shortlist, A5
Determine all positive integers$ n$ such that $f_n(x,y,z) = x^{2n} + y^{2n} + z^{2n} - xy - yz - zx$ divides $g_n(x,y, z) = (x - y)^{5n} + (y -z)^{5n} + (z - x)^{5n}$, as polynomials in $x, y, z$ with integer coefficients.
2014 Iran Team Selection Test, 3
let $m,n\in \mathbb{N}$ and $p(x),q(x),h(x)$ are polynomials with real Coefficients such that $p(x)$ is Descending.
and for all $x\in \mathbb{R}$
$p(q(nx+m)+h(x))=n(q(p(x))+h(x))+m$ .
prove that dont exist function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x\in \mathbb{R}$
$f(q(p(x))+h(x))=f(x)^{2}+1$
2016 IMO Shortlist, A6
The equation
$$(x-1)(x-2)\cdots(x-2016)=(x-1)(x-2)\cdots (x-2016)$$
is written on the board, with $2016$ linear factors on each side. What is the least possible value of $k$ for which it is possible to erase exactly $k$ of these $4032$ linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?
2019 ELMO Shortlist, A2
Find all functions $f:\mathbb Z\to \mathbb Z$ such that for all surjective functions $g:\mathbb Z\to \mathbb Z$, $f+g$ is also surjective. (A function $g$ is surjective over $\mathbb Z$ if for all integers $y$, there exists an integer $x$ such that $g(x)=y$.)
[i]Proposed by Sean Li[/i]
2010 IMO, 1
Find all function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x,y\in\mathbb{R}$ the following equality holds \[
f(\left\lfloor x\right\rfloor y)=f(x)\left\lfloor f(y)\right\rfloor \] where $\left\lfloor a\right\rfloor $ is greatest integer not greater than $a.$
[i]Proposed by Pierre Bornsztein, France[/i]
1983 AMC 12/AHSME, 21
Find the smallest positive number from the numbers below
$\text{(A)} \ 10-3\sqrt{11} \qquad \text{(B)} \ 3\sqrt{11}-10 \qquad \text{(C)} \ 18-5\sqrt{13} \qquad \text{(D)} \ 51-10\sqrt{26} \qquad \text{(E)} \ 10\sqrt{26}-51$
2014 Math Prize for Girls Olympiad, 3
Say that a positive integer is [i]sweet[/i] if it uses only the digits 0, 1, 2, 4, and 8. For instance, 2014 is sweet. There are sweet integers whose squares are sweet: some examples (not necessarily the smallest) are 1, 2, 11, 12, 20, 100, 202, and 210. There are sweet integers whose cubes are sweet: some examples (not necessarily the smallest) are 1, 2, 10, 20, 200, 202, 281, and 2424. Prove that there exists a sweet positive integer $n$ whose square and cube are both sweet, such that the sum of all the digits of $n$ is 2014.
1986 IMO Longlists, 19
Let $f : [0, 1] \to [0, 1]$ satisfy $f(0) = 0, f(1) = 1$ and
\[f(x + y) - f(x) = f(x) - f(x - y)\]
for all $x, y \geq 0$ with $x - y, x + y \in [0, 1].$ Prove that $f(x) = x$ for all $x \in [0, 1].$
2018 Canadian Mathematical Olympiad Qualification, 7
Let $n$ be a positive integer, with prime factorization $$n = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}$$ for distinct primes $p_1, \ldots, p_r$ and $e_i$ positive integers. Define $$rad(n) = p_1p_2\cdots p_r,$$ the product of all distinct prime factors of $n$.
Find all polynomials $P(x)$ with rational coefficients such that there exists infinitely many positive integers $n$ with $P(n) = rad(n)$.
2013 Purple Comet Problems, 30
Suppose $x,y$ and $z$ are integers that satisfy the system of equations \[x^2y+y^2z+z^2x=2186\] \[xy^2+yz^2+zx^2=2188.\] Evaluate $x^2+y^2+z^2.$
1971 IMO Longlists, 12
A system of n numbers $x_1, x_2, \ldots, x_n$ is given such that
\[x_1 = \log_{x_{n-1}} x_n, x_2 = \log_{x_{n}} x_1, \ldots, x_n = \log_{x_{n-2}} x_{n-1}.\]
Prove that $\prod_{k=1}^n x_k =1.$
1995 IMC, 9
Let all roots of an $n$-th degree polynomial $P(z)$ with complex coefficients lie on the unit circle in the complex plane. Prove that all roots of the polynomial
$$2zP'(z)-nP(z)$$
lie on the same circle.
1997 Denmark MO - Mohr Contest, 1
Let $n =123456789101112 ... 998999$ be the natural number where is obtained by writing the natural numbers from $1$ to $999$ one after the other. What is the $1997$-th digit number in $n$?
1989 IMO Longlists, 94
Let $ a_1 \geq a_2 \geq a_3 \in \mathbb{Z}^\plus{}$ be given and let N$ (a_1, a_2, a_3)$ be the number of solutions $ (x_1, x_2, x_3)$ of the equation
\[ \sum^3_{k\equal{}1} \frac{a_k}{x_k} \equal{} 1.\]
where $ x_1, x_2,$ and $ x_3$ are positive integers. Prove that \[ N(a_1, a_2, a_3) \leq 6 a_1 a_2 (3 \plus{} ln(2 a_1)).\]
1982 Miklós Schweitzer, 6
For every positive $ \alpha$, natural number $ n$, and at most $ \alpha n$ points $ x_i$, construct a trigonometric polynomial $ P(x)$ of degree at most $ n$ for which \[ P(x_i) \leq 1, \; \int_0^{2 \pi} P(x)dx=0,\ \; \textrm{and}\ \; \max P(x) > cn\ ,\] where the constant $ c$ depends only on $ \alpha$.
[i]G. Halasz[/i]