Found problems: 127
2013 India IMO Training Camp, 2
In a triangle $ABC$, let $I$ denote its incenter. Points $D, E, F$ are chosen on the segments $BC, CA, AB$, respectively, such that $BD + BF = AC$ and $CD + CE = AB$. The circumcircles of triangles $AEF, BFD, CDE$ intersect lines $AI, BI, CI$, respectively, at points $K, L, M$ (different from $A, B, C$), respectively. Prove that $K, L, M, I$ are concyclic.
2000 All-Russian Olympiad, 3
Let $O$ be the center of the circumcircle $\omega$ of an acute-angle triangle $ABC$. A circle $\omega_1$ with center $K$ passes through $A$, $O$, $C$ and intersects $AB$ at $M$ and $BC$ at $N$. Point $L$ is symmetric to $K$ with respect to line $NM$. Prove that $BL \perp AC$.