Found problems: 167
2017 NIMO Summer Contest, 5
Find the smallest positive integer $n$ for which the number \[ A_n = \prod_{k=1}^n \binom{k^2}{k} = \binom{1}{1} \binom{4}{2} \cdots \binom{n^2}{n} \] ends in the digit $0$ when written in base ten.
[i]Proposed by Evan Chen[/i]
2013 Peru IMO TST, 5
Determine all integers $m \geq 2$ such that every $n$ with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2n}$.
1972 IMO, 3
Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.
2024 JHMT HS, 15
Let $\ell = 1$, $M = 23$, $N = 45$, and $u = 67$. Compute the number of ordered pairs of nonnegative integers $(X, Y)$ with $X \leq M - \ell$ and $Y \leq N + u$ such that the sum
\[ \sum_{k=\ell}^{u} \binom{X + k}{M}\cdot\binom{Y - k}{N} \]
is divisible by $89$ (for integers $a$ and $b$, define the binomial coefficient $\tbinom{a}{b}$ to be the number of $b$-element subsets of any given $a$-element set, which is $0$ when $a < 0$, $b < 0$, or $b > a$).
2003 Poland - Second Round, 1
Prove that exists integer $n > 2003$ that in sequence
$\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{2003}$
each element is a divisor of all elements which are after him.
2013 Harvard-MIT Mathematics Tournament, 11
Compute the prime factorization of $1007021035035021007001$. (You should write your answer in the form $p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k}$ where $p_1,\ldots,p_k$ are distinct prime numbers and $e_1,\ldots,e_k$ are positive integers.)
1999 IMO Shortlist, 6
For $n \geq 3$ and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ given real numbers we have the following instructions:
- place out the numbers in some order in a ring;
- delete one of the numbers from the ring;
- if just two numbers are remaining in the ring: let $S$ be the sum of these two numbers. Otherwise, if there are more the two numbers in the ring, replace
Afterwards start again with the step (2). Show that the largest sum $S$ which can result in this way is given by the formula
\[S_{max}= \sum^n_{k=2} \begin{pmatrix} n -2 \\
[\frac{k}{2}] - 1\end{pmatrix}a_{k}.\]
2009 China Team Selection Test, 3
Let $ f(x)$ be a $ n \minus{}$degree polynomial all of whose coefficients are equal to $ \pm 1$, and having $ x \equal{} 1$ as its $ m$ multiple root. If $ m\ge 2^k (k\ge 2,k\in N)$, then $ n\ge 2^{k \plus{} 1} \minus{} 1.$
2019 Pan-African Shortlist, N6
Find the $2019$th strictly positive integer $n$ such that $\binom{2n}{n}$ is not divisible by $5$.
2015 BMT Spring, 7
Evaluate $\sum_{k=0}^{37}(-1)^k\binom{75}{2k}$.
2010 ISI B.Stat Entrance Exam, 8
Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]
2018 China Team Selection Test, 5
Given a positive integer $k$, call $n$ [i]good[/i] if among $$\binom{n}{0},\binom{n}{1},\binom{n}{2},...,\binom{n}{n}$$ at least $0.99n$ of them are divisible by $k$. Show that exists some positive integer $N$ such that among $1,2,...,N$, there are at least $0.99N$ good numbers.
2023 Romania EGMO TST, P1
In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$
1985 IMO Longlists, 59
For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}})\ge o(Q_{i_{1}}). \]
PEN A Problems, 27
Show that the coefficients of a binomial expansion $(a+b)^n$ where $n$ is a positive integer, are all odd, if and only if $n$ is of the form $2^{k}-1$ for some positive integer $k$.
2020 Estonia Team Selection Test, 1
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
2005 iTest, 33
If the coefficient of the third term in the binomial expansion of $(1 - 3x)^{1/4}$ is $-a/b$, where $ a$ and $b$ are relatively prime integers, find $a+b$.
2003 Vietnam Team Selection Test, 1
Let be four positive integers $m, n, p, q$, with $p < m$ given and $q < n$. Take four points $A(0; 0), B(p; 0), C (m; q)$ and $D(m; n)$ in the coordinate plane. Consider the paths $f$ from $A$ to $D$ and the paths $g$ from $B$ to $C$ such that when going along $f$ or $g$, one goes only in the positive directions of coordinates and one can only change directions (from the positive direction of one axe coordinate into the the positive direction of the other axe coordinate) at the points with integral coordinates. Let $S$ be the number of couples $(f, g)$ such that $f$ and $g$ have no common points. Prove that
\[S = \binom{n}{m+n} \cdot \binom{q}{m+q-p} - \binom{q}{m+q} \cdot \binom{n}{m+n-p}.\]
2012 IMO Shortlist, N3
Determine all integers $m \geq 2$ such that every $n$ with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2n}$.
1981 Romania Team Selection Tests, 3.
Let $n>r\geqslant 3$ be two integers and $d$ be a positive integer such that $nd\geqslant \dbinom{n+r}{r+1}$. Show that \[(n-t)(d-t)>\dbinom{n-t+r}{r+1},\] for $t=1,2,\ldots,n-1$
[i]Vasile Brânzănescu[/i]
2017 India National Olympiad, 6
Let $n\ge 1$ be an integer and consider the sum $$x=\sum_{k\ge 0} \dbinom{n}{2k} 2^{n-2k}3^k=\dbinom{n}{0}2^n+\dbinom{n}{2}2^{n-2}\cdot{}3+\dbinom{n}{4}2^{n-k}\cdot{}3^2 + \cdots{}.$$
Show that $2x-1,2x,2x+1$ form the sides of a triangle whose area and inradius are also integers.
2015 Rioplatense Mathematical Olympiad, Level 3, 5
For a positive integer number $n$ we denote $d(n)$ as the greatest common divisor of the binomial coefficients $\dbinom{n+1}{n} , \dbinom{n+2}{n} ,..., \dbinom{2n}{n}$.
Find all possible values of $d(n)$
2021 BMT, 9
Let $p=101.$ The sum
\[\sum_{k=1}^{10}\frac1{\binom pk}\]
can be written as a fraction of the form $\dfrac a{p!},$ where $a$ is a positive integer. Compute $a\pmod p.$
2016 German National Olympiad, 4
Find all positive integers $m,n$ with $m \leq 2n$ that solve the equation \[ m \cdot \binom{2n}{n} = \binom{m^2}{2}. \] [i](German MO 2016 - Problem 4)[/i]
1997 IMO Shortlist, 13
In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$