Found problems: 167
1991 IMTS, 2
Find all pairs of integers, $n$ and $k$, $2 < k < n$, such that the binomial coefficients
\[\binom{n}{k-1}, \binom{n}{k}, \binom{n}{k+1}\]
form an increasing arithmetic series.
1981 Romania Team Selection Tests, 3.
Let $n>r\geqslant 3$ be two integers and $d$ be a positive integer such that $nd\geqslant \dbinom{n+r}{r+1}$. Show that \[(n-t)(d-t)>\dbinom{n-t+r}{r+1},\] for $t=1,2,\ldots,n-1$
[i]Vasile Brânzănescu[/i]
1975 IMO Shortlist, 7
Prove that from $x + y = 1 \ (x, y \in \mathbb R)$ it follows that
\[x^{m+1} \sum_{j=0}^n \binom{m+j}{j} y^j + y^{n+1} \sum_{i=0}^m \binom{n+i}{i} x^i = 1 \qquad (m, n = 0, 1, 2, \ldots ).\]
2007 Putnam, 3
Let $ k$ be a positive integer. Suppose that the integers $ 1,2,3,\dots,3k \plus{} 1$ are written down in random order. What is the probability that at no time during this process, the sum of the integers that have been written up to that time is a positive integer divisible by $ 3$ ? Your answer should be in closed form, but may include factorials.
1962 Putnam, A5
Evaluate
$$ \sum_{k=0}^{n} \binom{n}{k}k^{2}.$$
2000 Dutch Mathematical Olympiad, 2
Three boxes contain 600 balls each. The first box contains 600 identical red balls, the second box contains 600 identical white balls and the third box contains 600 identical blue balls. From these three boxes, 900 balls are chosen. In how many ways can the balls be chosen? For example, one can choose 250 red balls, 187 white balls and 463 balls, or one can choose 360 red balls and 540 blue balls.
1979 Spain Mathematical Olympiad, 3
Prove the equality
$${n \choose 0}^2+ {n \choose 1}^2+ {n \choose 2}^2+...+{n \choose n}^2={2n \choose n}$$
2018 Thailand TSTST, 7
Evaluate $\sum_{n=2017}^{2030}\sum_{k=1}^{n}\left\{\frac{\binom{n}{k}}{2017}\right\}$.
[i]Note: $\{x\}=x-\lfloor x\rfloor$ for every real numbers $x$.[/i]
2003 Vietnam Team Selection Test, 1
Let be four positive integers $m, n, p, q$, with $p < m$ given and $q < n$. Take four points $A(0; 0), B(p; 0), C (m; q)$ and $D(m; n)$ in the coordinate plane. Consider the paths $f$ from $A$ to $D$ and the paths $g$ from $B$ to $C$ such that when going along $f$ or $g$, one goes only in the positive directions of coordinates and one can only change directions (from the positive direction of one axe coordinate into the the positive direction of the other axe coordinate) at the points with integral coordinates. Let $S$ be the number of couples $(f, g)$ such that $f$ and $g$ have no common points. Prove that
\[S = \binom{n}{m+n} \cdot \binom{q}{m+q-p} - \binom{q}{m+q} \cdot \binom{n}{m+n-p}.\]
2019 Pan-African, 6
Find the $2019$th strictly positive integer $n$ such that $\binom{2n}{n}$ is not divisible by $5$.
2010 Princeton University Math Competition, 8
Let $N$ be the sum of all binomial coefficients $\binom{a}{b}$ such that $a$ and $b$ are nonnegative integers and $a+b$ is an even integer less than 100. Find the remainder when $N$ is divided by 144. (Note: $\binom{a}{b} = 0$ if $a<b$, and $\binom{0}{0} = 1$.)
2005 District Olympiad, 1
Prove that for all $a\in\{0,1,2,\ldots,9\}$ the following sum is divisible by 10:
\[ S_a = \overline{a}^{2005} + \overline{1a}^{2005} + \overline{2a}^{2005} + \cdots + \overline{9a}^{2005}. \]
2013 Bundeswettbewerb Mathematik, 4
Consider the Pascal's triangle in the figure where the binomial coefficients are arranged in the usual manner. Select any binomial coefficient from anywhere except the right edge of the triangle and labet it $C$. To the right of $C$, in the horizontal line, there are $t$ numbers, we denote them as $a_1,a_2,\cdots,a_t$, where $a_t = 1$ is the last number of the series. Consider the line parallel to the left edge of the triangle containing $C$, there will only be $t$ numbers diagonally above $C$ in that line. We successively name them as $b_1,b_2,\cdots,b_t$, where $b_t = 1$. Show that
\[b_ta_1-b_{t-1}a_2+b_{t-2}a_3-\cdots+(-1)^{t-1}b_1a_t = 1\].
For example, Suppose you choose $\binom41 = 4$ (see figure), then $t = 3$, $a_1 = 6, a_2 = 4, a_3 = 1$ and $b_1 = 3, b_2 = 2, b_3 = 1$.
\[\begin{array}{ccccccccccc} & & & & & 1 & & & & & \\
& & & & 1 & & \underset{b_3}{1} & & & & \\
& & & 1 & & \underset{b_2}{2} & & 1 & & & \\
& & 1 & & \underset{b_1}{3} & & 3 & & 1 & & \\
& 1 & & \boxed{4} & & \underset{a_1}{6} & & \underset{a_2}{4} & & \underset{a_3}{1} & \\
\ldots & & \ldots & & \ldots & & \ldots & & \ldots & & \ldots \\
\end{array}\]
2014 Greece Team Selection Test, 4
Square $ABCD$ is divided into $n^2$ equal small squares by lines parallel to its sides.A spider starts from $A$ and moving only rightward or upwards,tries to reach $C$.Every "movement" of the spider consists of $k$ steps rightward and $m$ steps upwards or $m$ steps rightward and $k$ steps upwards(it can follow any possible order for the steps of each "movement").The spider completes $l$ "movements" and afterwards it moves without limitation (it still moves rightwards and upwards only).If $n=m\cdot l$,find the number of the possible paths the spider can follow to reach $C$.Note that $n,m,k,l\in \mathbb{N^{*}}$ with $k<m$.
2014 Greece Team Selection Test, 4
Square $ABCD$ is divided into $n^2$ equal small squares by lines parallel to its sides.A spider starts from $A$ and moving only rightward or upwards,tries to reach $C$.Every "movement" of the spider consists of $k$ steps rightward and $m$ steps upwards or $m$ steps rightward and $k$ steps upwards(it can follow any possible order for the steps of each "movement").The spider completes $l$ "movements" and afterwards it moves without limitation (it still moves rightwards and upwards only).If $n=m\cdot l$,find the number of the possible paths the spider can follow to reach $C$.Note that $n,m,k,l\in \mathbb{N^{*}}$ with $k<m$.
1990 IMO Longlists, 44
Prove that for any positive integer $n$, the number of odd integers among the binomial coefficients $\binom nh \ ( 0 \leq h \leq n)$ is a power of 2.
1967 IMO Shortlist, 1
Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that
\[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\]
is divisible by the product $c_1c_2\ldots c_n$.
2003 Czech-Polish-Slovak Match, 5
Consider the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}\ (k=1,2,\ldots n-1)$. Determine all positive integers $n$ for which $\binom{n}{1},\binom{n}{2},\ldots ,\binom{n}{n-1}$ are all even numbers.
2015 239 Open Mathematical Olympiad, 2
Prove that $\binom{n+k}{n}$ can be written as product of $n$ pairwise coprime numbers $a_1,a_2,\dots,a_n$ such that $k+i$ is divisible by $a_i$ for all indices $i$.
1956 Putnam, A5
Call a subset of $\{1,2,\ldots, n\}$ [i]unfriendly[/i] if no two of its elements are consecutive. Show that the number of unfriendly subsets with $k$ elements is $\binom{n-k+1}{k}.$
2015 Switzerland Team Selection Test, 2
Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that
\[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]
2020 IMC, 8
Compute $\lim\limits_{n \to \infty} \frac{1}{\log \log n} \sum\limits_{k=1}^n (-1)^k \binom{n}{k} \log k.$
1999 IMO Shortlist, 6
For $n \geq 3$ and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ given real numbers we have the following instructions:
- place out the numbers in some order in a ring;
- delete one of the numbers from the ring;
- if just two numbers are remaining in the ring: let $S$ be the sum of these two numbers. Otherwise, if there are more the two numbers in the ring, replace
Afterwards start again with the step (2). Show that the largest sum $S$ which can result in this way is given by the formula
\[S_{max}= \sum^n_{k=2} \begin{pmatrix} n -2 \\
[\frac{k}{2}] - 1\end{pmatrix}a_{k}.\]
KoMaL A Problems 2020/2021, A. 787
Let $p_n$ denote the $n^{\text{th}}$ prime number and define $a_n=\lfloor p_n\nu\rfloor$ for all positive integers $n$ where $\nu$ is a positive irrational number. Is it possible that there exist only finitely many $k$ such that $\binom{2a_k}{a_k}$ is divisible by $p_i^{10}$ for all $i=1,2,\ldots,2020?$
[i]Proposed by Superguy and ayan.nmath[/i]
2012 Silk Road, 3
Let $n > 1$ be an integer.
Determine the greatest common divisor of the set of numbers $\left\{ \left( \begin{matrix}
2n \\
2i+1 \\
\end{matrix} \right):0 \le i \le n-1 \right\}$
i.e. the largest positive integer, dividing $\left( \begin{matrix}
2n \\
2i+1 \\
\end{matrix} \right)$ without remainder for every $i = 0, 1, ..., n–1$ .
(Here $\left( \begin{matrix}
m \\
l \\
\end{matrix} \right)=\text{C}_{m}^{l}=\frac{m\text{!}}{l\text{!}\left( m-l \right)\text{!}}$ is binomial coefficient.)