This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 167

2017 Vietnam Team Selection Test, 2

For each positive integer $n$, set $x_n=\binom{2n}{n}$. a. Prove that if $\frac{2017^k}{2}<n<2017^k$ for some positive integer $k$ then $2017$ divides $x_n$. b. Find all positive integer $h>1$ such that there exists positive integers $N,T$ such that $(x_n)_{n>N}$ is periodic mod $h$ with period $T$.

1974 IMO, 3

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2012 Purple Comet Problems, 12

Ted flips seven fair coins. there are relatively prime positive integers $m$ and $n$ so that $\frac{m}{n}$ is the probability that Ted flips at least two heads given that he flips at least three tails. Find $m+n$.

1991 IMTS, 2

Find all pairs of integers, $n$ and $k$, $2 < k < n$, such that the binomial coefficients \[\binom{n}{k-1}, \binom{n}{k}, \binom{n}{k+1}\] form an increasing arithmetic series.

1975 IMO Shortlist, 7

Prove that from $x + y = 1 \ (x, y \in \mathbb R)$ it follows that \[x^{m+1} \sum_{j=0}^n \binom{m+j}{j} y^j + y^{n+1} \sum_{i=0}^m \binom{n+i}{i} x^i = 1 \qquad (m, n = 0, 1, 2, \ldots ).\]

1980 Polish MO Finals, 6

Prove that for every natural number $n$ we have $$\sum_{s=n}^{2n} 2^{2n-s}{s \choose n}= 2^{2n}.$$

1996 Romania National Olympiad, 1

For $n ,p \in N^*$ , $ 1 \le p \le n$, we define $$ R_n^p = \sum_{k=0}^p (p-k)^n(-1)^k C_{n+1}^k $$ Show that: $R_n^{n-p+1} =R_n^p$ .

1974 IMO Shortlist, 6

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2020 Thailand TST, 1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2015 239 Open Mathematical Olympiad, 2

Prove that $\binom{n+k}{n}$ can be written as product of $n$ pairwise coprime numbers $a_1,a_2,\dots,a_n$ such that $k+i$ is divisible by $a_i$ for all indices $i$.

2014 Czech-Polish-Slovak Match, 5

Let all positive integers $n$ satisfy the following condition: for each non-negative integers $k, m$ with $k + m \le n$, the numbers $\binom{n-k}{m}$ and $\binom{n-m}{k}$ leave the same remainder when divided by $2$. (Poland) PS. The translation was done using Google translate and in case it is not right, there is the original text in Slovak

Kvant 2023, M2736

Find the remainder of $\binom{3^n}{2^n}$ modulo $3^{n+1}$. [i]Proposed by V. Rastorguev[/i]

1965 Putnam, A2

Show that, for any positive integer $n$, \[ \sum_{r=0}^{[(n-1)/2]}\left\{\frac{n-2r}n\binom nr\right\}^2 = \frac 1n\binom{2n-2}{n-1}, \] where $[x]$ means the greatest integer not exceeding $x$, and $\textstyle\binom nr$ is the binomial coefficient "$n$ choose $r$", with the convention $\textstyle\binom n0 = 1$.

1994 Hong Kong TST, 2

In a table-tennis tournament of $10$ contestants, any $2$ contestants meet only once. We say that there is a winning triangle if the following situation occurs: $i$-th contestant defeated the $j$-th contestant, $j$-th contestant defeated the $k$-th contestant, and, $k$-th contestant defeated the $i$-th contestant. Let, $W_i$ and $L_i $ be respectively the number of games won and lost by the $i$-th contestant. Suppose, $L_i+W_j\geq 8$ whenever the $j$-th contestant defeats the $i$-th contestant. Prove that, there are exactly $40$ winning triangles in this tournament.

1956 Putnam, A7

Prove that the number of odd binomial coefficients in any finite binomial expansion is a power of $2.$

2014 Balkan MO, 4

Let $n$ be a positive integer. A regular hexagon with side length $n$ is divided into equilateral triangles with side length $1$ by lines parallel to its sides. Find the number of regular hexagons all of whose vertices are among the vertices of those equilateral triangles. [i]UK - Sahl Khan[/i]

1973 IMO Shortlist, 8

Prove that there are exactly $\binom{k}{[k/2]}$ arrays $a_1, a_2, \ldots , a_{k+1}$ of nonnegative integers such that $a_1 = 0$ and $|a_i-a_{i+1}| = 1$ for $i = 1, 2, \ldots , k.$

2014 Greece Team Selection Test, 4

Square $ABCD$ is divided into $n^2$ equal small squares by lines parallel to its sides.A spider starts from $A$ and moving only rightward or upwards,tries to reach $C$.Every "movement" of the spider consists of $k$ steps rightward and $m$ steps upwards or $m$ steps rightward and $k$ steps upwards(it can follow any possible order for the steps of each "movement").The spider completes $l$ "movements" and afterwards it moves without limitation (it still moves rightwards and upwards only).If $n=m\cdot l$,find the number of the possible paths the spider can follow to reach $C$.Note that $n,m,k,l\in \mathbb{N^{*}}$ with $k<m$.

2022 China Team Selection Test, 5

Given a positive integer $n$, let $D$ is the set of positive divisors of $n$, and let $f: D \to \mathbb{Z}$ be a function. Prove that the following are equivalent: (a) For any positive divisor $m$ of $n$, \[ n ~\Big|~ \sum_{d|m} f(d) \binom{n/d}{m/d}. \] (b) For any positive divisor $k$ of $n$, \[ k ~\Big|~ \sum_{d|k} f(d). \]

1998 Iran MO (3rd Round), 6

For any two nonnegative integers $n$ and $k$ satisfying $n\geq k$, we define the number $c(n,k)$ as follows: - $c\left(n,0\right)=c\left(n,n\right)=1$ for all $n\geq 0$; - $c\left(n+1,k\right)=2^{k}c\left(n,k\right)+c\left(n,k-1\right)$ for $n\geq k\geq 1$. Prove that $c\left(n,k\right)=c\left(n,n-k\right)$ for all $n\geq k\geq 0$.

2018 Thailand TSTST, 7

Evaluate $\sum_{n=2017}^{2030}\sum_{k=1}^{n}\left\{\frac{\binom{n}{k}}{2017}\right\}$. [i]Note: $\{x\}=x-\lfloor x\rfloor$ for every real numbers $x$.[/i]

1956 Putnam, A5

Call a subset of $\{1,2,\ldots, n\}$ [i]unfriendly[/i] if no two of its elements are consecutive. Show that the number of unfriendly subsets with $k$ elements is $\binom{n-k+1}{k}.$

1923 Eotvos Mathematical Competition, 2

If $$s_n = 1 + q + q^2 +... + q^n$$ and $$ S_n = 1 +\frac{1 + q}{2}+ \left( \frac{1 + q}{2}\right)^2 +... + \left( \frac{1 + q}{2}\right)^n,$$ prove that $${n + 1 \choose 1}+{n + 1 \choose 2} s_1 + {n + 1 \choose 3} s_2 + ... + {n + 1 \choose n + 1} s_n = 2^nS_n$$

1974 Polish MO Finals, 5

Prove that for any natural numbers $n,r$ with $r + 3 \le n $the binomial coefficients $n \choose r$, $n \choose r+1$, $n \choose r+2 $, $n \choose r+3 $ cannot be successive terms of an arithmetic progression.

2014 Middle European Mathematical Olympiad, 4

In Happy City there are $2014$ citizens called $A_1, A_2, \dots , A_{2014}$. Each of them is either [i]happy[/i] or [i]unhappy[/i] at any moment in time. The mood of any citizen $A$ changes (from being unhappy to being happy or vice versa) if and only if some other happy citizen smiles at $A$. On Monday morning there were $N$ happy citizens in the city. The following happened on Monday during the day: the citizen $A_1$ smiled at citizen $A_2$, then $A_2$ smiled at $A_3$, etc., and, finally, $A_{2013}$ smiled at $A_{2014}$. Nobody smiled at anyone else apart from this. Exactly the same repeated on Tuesday, Wednesday and Thursday. There were exactly $2000$ happy citizens on Thursday evening. Determine the largest possible value of $N$.