This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 167

1999 Romania Team Selection Test, 3

Prove that for any positive integer $n$, the number \[ S_n = {2n+1\choose 0}\cdot 2^{2n}+{2n+1\choose 2}\cdot 2^{2n-2}\cdot 3 +\cdots + {2n+1 \choose 2n}\cdot 3^n \] is the sum of two consecutive perfect squares. [i]Dorin Andrica[/i]

Russian TST 2020, P1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2013 NIMO Problems, 5

For every integer $n \ge 1$, the function $f_n : \left\{ 0, 1, \cdots, n \right\} \to \mathbb R$ is defined recursively by $f_n(0) = 0$, $f_n(1) = 1$ and \[ (n-k) f_n(k-1) + kf_n(k+1) = nf_n(k) \] for each $1 \le k < n$. Let $S_N = f_{N+1}(1) + f_{N+2}(2) + \cdots + f_{2N} (N)$. Find the remainder when $\left\lfloor S_{2013} \right\rfloor$ is divided by $2011$. (Here $\left\lfloor x \right\rfloor$ is the greatest integer not exceeding $x$.) [i]Proposed by Lewis Chen[/i]

2018 China Team Selection Test, 5

Given a positive integer $k$, call $n$ [i]good[/i] if among $$\binom{n}{0},\binom{n}{1},\binom{n}{2},...,\binom{n}{n}$$ at least $0.99n$ of them are divisible by $k$. Show that exists some positive integer $N$ such that among $1,2,...,N$, there are at least $0.99N$ good numbers.

1988 IMO Shortlist, 2

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]

2018 VTRMC, 4

Let $m, n$ be integers such that $n \geq m \geq 1$. Prove that $\frac{\text{gcd} (m,n)}{n} \binom{n}{m}$ is an integer. Here $\text{gcd}$ denotes greatest common divisor and $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ denotes the binomial coefficient.

2008 Germany Team Selection Test, 2

For every integer $ k \geq 2,$ prove that $ 2^{3k}$ divides the number \[ \binom{2^{k \plus{} 1}}{2^{k}} \minus{} \binom{2^{k}}{2^{k \minus{} 1}} \] but $ 2^{3k \plus{} 1}$ does not. [i]Author: Waldemar Pompe, Poland[/i]

2008 Federal Competition For Advanced Students, P1, 1

What is the remainder of the number $1 \binom{2008}{0 }+2\binom{2008}{1}+ ...+2009\binom{2008}{2008}$ when divided by $2008$?

2014 NIMO Problems, 6

10 students are arranged in a row. Every minute, a new student is inserted in the row (which can occur in the front and in the back as well, hence $11$ possible places) with a uniform $\tfrac{1}{11}$ probability of each location. Then, either the frontmost or the backmost student is removed from the row (each with a $\tfrac{1}{2}$ probability). Suppose you are the eighth in the line from the front. The probability that you exit the row from the front rather than the back is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $100m+n$. [i]Proposed by Lewis Chen[/i]

2005 iTest, 7

Find the coefficient of the fourth term of the expansion of $(x+y)^{15}$.

2023 Romania EGMO TST, P1

In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$

2011 Morocco TST, 1

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

1923 Eotvos Mathematical Competition, 2

If $$s_n = 1 + q + q^2 +... + q^n$$ and $$ S_n = 1 +\frac{1 + q}{2}+ \left( \frac{1 + q}{2}\right)^2 +... + \left( \frac{1 + q}{2}\right)^n,$$ prove that $${n + 1 \choose 1}+{n + 1 \choose 2} s_1 + {n + 1 \choose 3} s_2 + ... + {n + 1 \choose n + 1} s_n = 2^nS_n$$

2017 Vietnam Team Selection Test, 2

For each positive integer $n$, set $x_n=\binom{2n}{n}$. a. Prove that if $\frac{2017^k}{2}<n<2017^k$ for some positive integer $k$ then $2017$ divides $x_n$. b. Find all positive integer $h>1$ such that there exists positive integers $N,T$ such that $(x_n)_{n>N}$ is periodic mod $h$ with period $T$.

2004 Romania Team Selection Test, 7

Let $a,b,c$ be 3 integers, $b$ odd, and define the sequence $\{x_n\}_{n\geq 0}$ by $x_0=4$, $x_1=0$, $x_2=2c$, $x_3=3b$ and for all positive integers $n$ we have \[ x_{n+3} = ax_{n-1}+bx_n + cx_{n+1} . \] Prove that for all positive integers $m$, and for all primes $p$ the number $x_{p^m}$ is divisible by $p$.

2018 Bosnia And Herzegovina - Regional Olympiad, 1

$a)$ Prove that for all positive integers $n \geq 3$ holds: $$\binom{n}{1}+\binom{n}{2}+...+\binom{n}{n-1}=2^n-2$$ where $\binom{n}{k}$ , with integer $k$ such that $n \geq k \geq 0$, is binomial coefficent $b)$ Let $n \geq 3$ be an odd positive integer. Prove that set $A=\left\{ \binom{n}{1},\binom{n}{2},...,\binom{n}{\frac{n-1}{2}} \right\}$ has odd number of odd numbers

1974 IMO Longlists, 30

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2022 Caucasus Mathematical Olympiad, 8

Paul can write polynomial $(x+1)^n$, expand and simplify it, and after that change every coefficient by its reciprocal. For example if $n=3$ Paul gets $(x+1)^3=x^3+3x^2+3x+1$ and then $x^3+\frac13x^2+\frac13x+1$. Prove that Paul can choose $n$ for which the sum of Paul’s polynomial coefficients is less than $2.022$.

2014 Middle European Mathematical Olympiad, 4

In Happy City there are $2014$ citizens called $A_1, A_2, \dots , A_{2014}$. Each of them is either [i]happy[/i] or [i]unhappy[/i] at any moment in time. The mood of any citizen $A$ changes (from being unhappy to being happy or vice versa) if and only if some other happy citizen smiles at $A$. On Monday morning there were $N$ happy citizens in the city. The following happened on Monday during the day: the citizen $A_1$ smiled at citizen $A_2$, then $A_2$ smiled at $A_3$, etc., and, finally, $A_{2013}$ smiled at $A_{2014}$. Nobody smiled at anyone else apart from this. Exactly the same repeated on Tuesday, Wednesday and Thursday. There were exactly $2000$ happy citizens on Thursday evening. Determine the largest possible value of $N$.

1958 November Putnam, B1

Given $$b_n = \sum_{k=0}^{n} \binom{n}{k}^{-1}, \;\; n\geq 1,$$ prove that $$b_n = \frac{n+1}{2n} b_{n-1} +1, \;\; n \geq 2.$$ Hence, as a corollary, show $$ \lim_{n \to \infty} b_n =2.$$

2005 Vietnam Team Selection Test, 2

Given $n$ chairs around a circle which are marked with numbers from 1 to $n$ .There are $k$, $k \leq 4 \cdot n$ students sitting on those chairs .Two students are called neighbours if there is no student sitting between them. Between two neighbours students ,there are at less 3 chairs. Find the number of choices of $k$ chairs so that $k$ students can sit on those and the condition is satisfied.

2012 ELMO Shortlist, 8

Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$. [i]Victor Wang.[/i]

2016 Taiwan TST Round 1, 3

Let $\mathbb{Z}^+$ denote the set of all positive integers. Find all surjective functions $f:\mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ that satisfy all of the following conditions: for all $a,b,c \in \mathbb{Z}^+$, (i)$f(a,b) \leq a+b$; (ii)$f(a,f(b,c))=f(f(a,b),c)$ (iii)Both $\binom{f(a,b)}{a}$ and $\binom{f(a,b)}{b}$ are odd numbers.(where $\binom{n}{k}$ denotes the binomial coefficients)

1981 IMO, 2

Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]

2013 Harvard-MIT Mathematics Tournament, 11

Compute the prime factorization of $1007021035035021007001$. (You should write your answer in the form $p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k}$ where $p_1,\ldots,p_k$ are distinct prime numbers and $e_1,\ldots,e_k$ are positive integers.)