This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 167

1972 Putnam, A1

Show that $\binom{n}{m},\binom{n}{m+1},\binom{n}{m+2}$ and $\binom{n}{m+3}$ cannot be in arithmetic progression, where $n,m>0$ and $n\geq m+3$.

1969 IMO Shortlist, 6

$(BEL 6)$ Evaluate $\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right)^{10}$ in two different ways and prove that $\dbinom{10}{1}-\dbinom{10}{3}+\frac{1}{2}\dbinom{10}{5}=2^4$

2012 Silk Road, 3

Let $n > 1$ be an integer. Determine the greatest common divisor of the set of numbers $\left\{ \left( \begin{matrix} 2n \\ 2i+1 \\ \end{matrix} \right):0 \le i \le n-1 \right\}$ i.e. the largest positive integer, dividing $\left( \begin{matrix} 2n \\ 2i+1 \\ \end{matrix} \right)$ without remainder for every $i = 0, 1, ..., n–1$ . (Here $\left( \begin{matrix} m \\ l \\ \end{matrix} \right)=\text{C}_{m}^{l}=\frac{m\text{!}}{l\text{!}\left( m-l \right)\text{!}}$ is binomial coefficient.)

2019 Pan-African, 6

Find the $2019$th strictly positive integer $n$ such that $\binom{2n}{n}$ is not divisible by $5$.

1979 Romania Team Selection Tests, 6.

If $n>2$ is a positive integer, compute \[\max_{1\leqslant k\leqslant n}\max_{n_1+...+n_k=n} \binom{n_1}{2}\binom{n_2}{2}\ldots\binom{n_k}{2}.\] [i]Ioan Tomescu[/i]

PEN H Problems, 57

Show that the equation ${n \choose k}=m^{l}$ has no integral solution with $l \ge 2$ and $4 \le k \le n-4$.

2023 Brazil Undergrad MO, 2

Let $a_n = \frac{1}{\binom{2n}{n}}, \forall n \leq 1$. a) Show that $\sum\limits_{n=1}^{+\infty}a_nx^n$ converges for all $x \in (-4, 4)$ and that the function $f(x) = \sum\limits_{n=1}^{+\infty}a_nx^n$ satisfies the differential equation $x(x - 4)f'(x) + (x + 2)f(x) = -x$. b) Prove that $\sum\limits_{n=1}^{+\infty}\frac{1}{\binom{2n}{n}} = \frac{1}{3} + \frac{2\pi\sqrt{3}}{27}$.

1985 IMO, 3

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_1}+Q_{i_2}+\ldots+Q_{i_n})\ge o(Q_{i_1}). \]

2006 AMC 12/AHSME, 25

How many non-empty subsets $ S$ of $ \{1, 2, 3, \ldots, 15\}$ have the following two properties? (1) No two consecutive integers belong to $ S$. (2) If $ S$ contains $ k$ elements, then $ S$ contains no number less than $ k$. $ \textbf{(A) } 277\qquad \textbf{(B) } 311\qquad \textbf{(C) } 376\qquad \textbf{(D) } 377\qquad \textbf{(E) } 405$

2022 Caucasus Mathematical Olympiad, 8

Paul can write polynomial $(x+1)^n$, expand and simplify it, and after that change every coefficient by its reciprocal. For example if $n=3$ Paul gets $(x+1)^3=x^3+3x^2+3x+1$ and then $x^3+\frac13x^2+\frac13x+1$. Prove that Paul can choose $n$ for which the sum of Paul’s polynomial coefficients is less than $2.022$.

Kvant 2019, M2572

Let $k$ be a fixed positive integer. Prove that the sequence $\binom{2}{1},\binom{4}{2},\binom{8}{4},\ldots, \binom{2^{n+1}}{2^n},\ldots$ is eventually constant modulo $2^k$. [i]Proposed by V. Rastorguyev[/i]

2011 Indonesia TST, 2

Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$

1988 IMO Shortlist, 2

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]

1972 IMO Longlists, 15

Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.

2020 Greece Team Selection Test, 3

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

1976 AMC 12/AHSME, 23

For integers $k$ and $n$ such that $1\le k<n$, let $C^n_k=\frac{n!}{k!(n-k)!}$. Then $\left(\frac{n-2k-1}{k+1}\right)C^n_k$ is an integer $\textbf{(A) }\text{for all }k\text{ and }n\qquad$ $\textbf{(B) }\text{for all even values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad$ $\textbf{(C) }\text{for all odd values of }k\text{ and }n,\text{ but not for all }k\text{ and }n\qquad$ $\textbf{(D) }\text{if }k=1\text{ or }n-1,\text{ but not for all odd values }k\text{ and }n\qquad$ $\textbf{(E) }\text{if }n\text{ is divisible by }k,\text{ but not for all even values }k\text{ and }n$

2011 Morocco TST, 1

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.