This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 30

2024 Olimphíada, 3

A sequence of positive real numbers $a_1, a_2, \dots$ is called $\textit{phine}$ if it satisfies $$a_{n+2}=\frac{a_{n+1}+a_{n-1}}{a_n},$$ for all $n\geq2$. Is there a $\textit{phine}$ sequence such that, for every real number $r$, there is some $n$ for which $a_n>r$?

1992 Putnam, B5

Let $D_n$ denote the value of the $(n -1) \times (n - 1)$ determinant $$ \begin{pmatrix} 3 & 1 &1 & \ldots & 1\\ 1 & 4 &1 & \ldots & 1\\ 1 & 1 & 5 & \ldots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \ldots & n+1 \end{pmatrix}.$$ Is the set $\left\{ \frac{D_n }{n!} \, | \, n \geq 2\right\}$ bounded?

1962 Putnam, B3

Let $S$ be a convex region in the euclidean plane containing the origin. Assume that every ray from the origin has at least one point outside $S$. Prove that $S$ is bounded.

2004 IMO Shortlist, 2

Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals. Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded? [i]Proposed by Mihai Bălună, Romania[/i]

2015 Romania Team Selection Tests, 2

Let $(a_n)_{n \geq 0}$ and $(b_n)_{n \geq 0}$ be sequences of real numbers such that $ a_0>\frac{1}{2}$ , $a_{n+1} \geq a_n$ and $b_{n+1}=a_n(b_n+b_{n+2})$ for all non-negative integers $n$ . Show that the sequence $(b_n)_{n \geq 0}$ is bounded .