This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2015 Middle European Mathematical Olympiad, 8

Let $n\ge 2$ be an integer. Determine the number of positive integers $m$ such that $m\le n$ and $m^2+1$ is divisible by $n$.

2018 Turkey Team Selection Test, 1

Prove that, for all integers $a, b$, there exists a positive integer $n$, such that the number $n^2+an+b$ has at least $2018$ different prime divisors.

2018 Caucasus Mathematical Olympiad, 5

Baron Munсhausen discovered the following theorem: "For any positive integers $a$ and $b$ there exists a positive integer $n$ such that $an$ is a perfect cube, while $bn$ is a perfect fifth power". Determine if the statement of Baron’s theorem is correct.