Found problems: 2215
2002 District Olympiad, 3
[b]a)[/b] Calculate $ \lim_{n\to\infty} \int_0^{\alpha } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx , $ for all $ \alpha\in (0,1) . $
[b]b)[/b] Calculate $ \lim_{n\to\infty} \int_0^{1 } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx . $
2007 Today's Calculation Of Integral, 248
Evaluate $ \int_{\frac {\pi}{4}}^{\frac {3}{4}\pi } \cos \frac {1}{\sin \left(\frac {1}{\sin x}\right)}\cdot \cos \left(\frac {1}{\sin x}\right)\cdot \frac {\cos x}{\sin ^ 2 x\cdot \sin ^ 2 \left(\frac {1}{\sin x }\right)}\ dx$
Last Edited, Sorry
kunny
2013 National Olympiad First Round, 14
Let $d(n)$ be the number of positive integers that divide the integer $n$. For all positive integral divisors $k$ of $64800$, what is the sum of numbers $d(k)$?
$
\textbf{(A)}\ 1440
\qquad\textbf{(B)}\ 1650
\qquad\textbf{(C)}\ 1890
\qquad\textbf{(D)}\ 2010
\qquad\textbf{(E)}\ \text{None of above}
$
2018 PUMaC Live Round, Calculus 2
Three friends are trying to meet for lunch at a cafe. Each friend will arrive independently at random between $1\!:\!00$ pm and $2\!:\!00$ pm. Each friend will only wait for $5$ minutes by themselves before leaving. However, if another friend arrives within those $5$ minutes, the pair will wait $15$ minutes from the time the second friend arrives. If the probability that the three friends meet for lunch can be expressed in simplest form as $\tfrac{m}{n}$, what is $m+n$?
2005 Today's Calculation Of Integral, 72
Let $f(x)$ be a continuous function satisfying $f(x)=1+k\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t)\sin (x-t)dt\ (k:constant\ number)$
Find the value of $k$ for which $\int_0^{\pi} f(x)dx$ is maximized.
2013 Waseda University Entrance Examination, 4
Given a solid $R$ contained in a semi cylinder with the hight $1$ which has a semicircle with radius $1$ as the base. The cross section at the hight $x\ (0\leq x\leq 1)$ is the form combined with two right-angled triangles as attached figure as below. Answer the following questions.
(1) Find the cross-sectional area $S(x)$ at the hight $x$.
(2) Find the volume of $R$. If necessary, when you integrate, set $x=\sin t.$
2010 Today's Calculation Of Integral, 660
Let $a,\ b$ be given positive constants.
Evaluate
\[\int_0^1 \frac{\ln\ (x+a)^{x+a}(x+b)^{x+b}}{(x+a)(x+b)}dx.\]
Own
1997 Romania National Olympiad, 4
Suppose that $(f_n)_{n\in N}$ be the sequence from all functions $f_n:[0,1]\rightarrow \mathbb{R^+}$ s.t. $f_0$ be the continuous function and $\forall x\in [0,1] , \forall n\in \mathbb {N} , f_{n+1}(x)=\int_0^x \frac {1}{1+f_n (t)}dt$. Prove that for every $x\in [0,1]$ the sequence of $(f_n(x))_{n\in N}$ be the convergent sequence and calculate the limitation.
2013 Online Math Open Problems, 45
Let $N$ denote the number of ordered 2011-tuples of positive integers $(a_1,a_2,\ldots,a_{2011})$ with $1\le a_1,a_2,\ldots,a_{2011} \le 2011^2$ such that there exists a polynomial $f$ of degree $4019$ satisfying the following three properties:
[list] [*] $f(n)$ is an integer for every integer $n$; [*] $2011^2 \mid f(i) - a_i$ for $i=1,2,\ldots,2011$; [*] $2011^2 \mid f(n+2011) - f(n)$ for every integer $n$. [/list]
Find the remainder when $N$ is divided by $1000$.
[i]Victor Wang[/i]
1961 AMC 12/AHSME, 4
Let the set consisting of the squares of the positive integers be called $u$; thus $u$ is the set $1, 4, 9, 16 . . .$. If a certain operation on one or more members of the set always yields a member of the set, we say that the set is closed under that operation. Then $u$ is closed under:
${{ \textbf{(A)}\ \text{Addition}\qquad\textbf{(B)}\ \text{Multiplication} \qquad\textbf{(C)}\ \text{Division} \qquad\textbf{(D)}\ \text{Extraction of a positive integral root} }\qquad\textbf{(E)} \text{None of these} } $
1990 AMC 12/AHSME, 7
A triangle with integral sides has perimeter $8$. The area of the triangle is
$\textbf{(A) }2\sqrt{2}\qquad
\textbf{(B) }\dfrac{16}{9}\sqrt{3}\qquad
\textbf{(C) }2\sqrt{3}\qquad
\textbf{(D) }4\qquad
\textbf{(E) }4\sqrt{2}$
2010 Today's Calculation Of Integral, 543
Let $ y$ be the function of $ x$ satisfying the differential equation $ y'' \minus{} y \equal{} 2\sin x$.
(1) Let $ y \equal{} e^xu \minus{} \sin x$, find the differential equation with which the function $ u$ with respect to $ x$ satisfies.
(2) If $ y(0) \equal{} 3,\ y'(0) \equal{} 0$, then determine $ y$.
PEN H Problems, 8
Show that the equation \[x^{3}+y^{3}+z^{3}+t^{3}=1999\] has infinitely many integral solutions.
2015 Polish MO Finals, 2
Let $P$ be a polynomial with real coefficients. Prove that if for some integer $k$ $P(k)$ isn't integral, then there exist infinitely many integers $m$, for which $P(m)$ isn't integral.
2011 ISI B.Stat Entrance Exam, 1
Let $x_1, x_2, \cdots , x_n$ be positive reals with $x_1+x_2+\cdots+x_n=1$. Then show that
\[\sum_{i=1}^n \frac{x_i}{2-x_i} \ge \frac{n}{2n-1}\]
2014 VTRMC, Problem 2
Evaluate $\int^2_0\frac{x(16-x^2)}{16-x^2+\sqrt{(4-x)(4+x)(12+x^2)}}dx$.
2009 ISI B.Stat Entrance Exam, 2
Let $f(x)$ be a continuous function, whose first and second derivatives are continuous on $[0,2\pi]$ and $f''(x) \geq 0$ for all $x$ in $[0,2\pi]$. Show that
\[\int_{0}^{2\pi} f(x)\cos x dx \geq 0\]
2005 Today's Calculation Of Integral, 39
Find the minimum value of the following function $f(x) $ defined at $0<x<\frac{\pi}{2}$.
\[f(x)=\int_0^x \frac{d\theta}{\cos \theta}+\int_x^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta}\]
2010 Today's Calculation Of Integral, 542
Find continuous functions $ f(x),\ g(x)$ which takes positive value for any real number $ x$, satisfying $ g(x)\equal{}\int_0^x f(t)\ dt$ and $ \{f(x)\}^2\minus{}\{g(x)\}^2\equal{}1$.
1998 Putnam, 2
Let $s$ be any arc of the unit circle lying entirely in the first quadrant. Let $A$ be the area of the region lying below $s$ and above the $x$-axis and let $B$ be the area of the region lying to the right of the $y$-axis and to the left of $s$. Prove that $A+B$ depends only on the arc length, and not on the position, of $s$.
2005 Today's Calculation Of Integral, 87
Find the minimum value of $a\ (0<a<1)$ for which the following definite integral is minimized.
\[ \int_0^{\pi} |\sin x-ax|\ dx \]
2012 Kyoto University Entry Examination, 1A
Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.
2014 PUMaC Team, 0
Your team receives up to $100$ points total for the team round. To play this minigame for up to $10$ bonus points, you must decide how to construct an optimal army with number of soldiers equal to the points you receive.
Construct an army of $100$ soldiers with $5$ flanks; thus your army is the union of battalions $B_1$, $B_2$, $B_3$, $B_4$, and $B_5$. You choose the size of each battalion such that $|B_1|+|B_2|+|B_3|+|B_4|+|B_5|=100$. The size of each batallion must be integral and non-negative. Then, suppose you receive $n$ points for the Team Round. We will then "supply" your army as follows: if $n>B_1$, we fill in battalion $1$ so that it has $|B_1|$ soldiers; then repeat for the next battalion with $n-|B_1|$ soldiers. If at some point there are not enough soldiers to fill the battalion, the remainder will be put in that battalion and subsequent battalions will be empty. (Ex: suppose you tell us to form battalions of size $\{20,30,20,20,10\}$, and your team scores $73$ points. Then your battalions will actually be $\{20,30,20,3,0\}$.)
Your team's army will then "fight" another's. The $B_i$ of both teams will be compared with the other $B_i$, and the winner of the overall war is the army who wins the majority of the battalion fights. The winner receives $1$ victory point, and in case of ties, both teams receive $\tfrac12$ victory points.
Every team's army will fight everyone else's and the team war score will be the sum of the victory points won from wars. The teams with ranking $x$ where $7k\leq x\leq 7(k+1)$ will earn $10-k$ bonus points.
For example: Team Princeton decides to allocate its army into battalions with size $|B_1|$, $|B_2|$, $|B_3|$, $|B_4|$, $|B_5|$ $=$ $20$, $20$, $20$, $20$, $20$. Team MIT allocates its army into battalions with size $|B_1|$, $|B_2|$, $|B_3|$, $|B_4|$, $|B_5|$ $=$ $10$, $10$, $10$, $10$, $60$. Now suppose Princeton scores $80$ points on the Team Round, and MIT scores $90$ points. Then after supplying, the armies will actually look like $\{20, 20, 20, 20, 0\}$ for Princeton and $\{10, 10, 10, 10, 50\}$ for MIT. Then note that in a war, Princeton beats MIT in the first four battalion battles while MIT only wins the last battalion battle; therefore Princeton wins the war, and Princeton would win $1$ victory point.
1992 India National Olympiad, 9
Let $A_1, A_2, \ldots, A_n$ be an $n$ -sided regular polygon. If $\frac{1}{A_1 A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_1A_4}$, find $n$.
2011 South East Mathematical Olympiad, 1
If $\min \left \{ \frac{ax^2+b}{\sqrt{x^2+1}} \mid x \in \mathbb{R}\right \} = 3$, then (1) Find the range of $b$; (2) for every given $b$, find $a$.