This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 247

2012 Gulf Math Olympiad, 3

Consider a $3\times7$ grid of squares. Each square may be coloured green or white. [list] (a) Is it possible to find a colouring so that no subrectangle has all four corner squares of the same colour? (b) Is it possible for a $4\times 6$ grid? [/list] [i]Subrectangles must have their corners at grid-points of the original diagram. The corner squares of a subrectangle must be different. The original diagram is a subrectangle of itself.[/i]

2011 Switzerland - Final Round, 9

For any positive integer $n$ let $f(n)$ be the number of divisors of $n$ ending with $1$ or $9$ in base $10$ and let $g(n)$ be the number of divisors of $n$ ending with digit $3$ or $7$ in base $10$. Prove that $f(n)\geqslant g(n)$ for all nonnegative integers $n$. [i](Swiss Mathematical Olympiad 2011, Final round, problem 9)[/i]

2020 Germany Team Selection Test, 3

Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\] is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) [i]Russia[/i]

2012 ELMO Shortlist, 2

Determine whether it's possible to cover a $K_{2012}$ with a) 1000 $K_{1006}$'s; b) 1000 $K_{1006,1006}$'s. [i]David Yang.[/i]

2002 Korea - Final Round, 3

The following facts are known in a mathematical contest: [list] (a) The number of problems tested was $n\ge 4$ (b) Each problem was solved by exactly four contestants. (c) For each pair of problems, there is exactly one contestant who solved both problems [/list] Assuming the number of contestants is greater than or equal to $4n$, find the minimum value of $n$ for which there always exists a contestant who solved all the problems.

2023 German National Olympiad, 6

The equation $x^3-3x^2+1=0$ has three real solutions $x_1<x_2<x_3$. Show that for any positive integer $n$, the number $\left\lceil x_3^n\right\rceil$ is a multiple of $3$.

2010 Math Prize for Girls Olympiad, 1

Let $S$ be a set of 100 integers. Suppose that for all positive integers $x$ and $y$ (possibly equal) such that $x + y$ is in $S$, either $x$ or $y$ (or both) is in $S$. Prove that the sum of the numbers in $S$ is at most 10,000.

2010 Contests, 1

In a country, there are some two-way roads between the cities. There are $2010$ roads connected to the capital city. For all cities different from the capital city, there are less than $2010$ roads connected to that city. For two cities, if there are the same number of roads connected to these cities, then this number is even. $k$ roads connected to the capital city will be deleted. It is wanted that whatever the road network is, if we can reach from one city to another at the beginning, then we can reach after the deleting process also. Find the maximum value of $k.$

2001 Vietnam Team Selection Test, 2

Let an integer $n > 1$ be given. In the space with orthogonal coordinate system $Oxyz$ we denote by $T$ the set of all points $(x, y, z)$ with $x, y, z$ are integers, satisfying the condition: $1 \leq x, y, z \leq n$. We paint all the points of $T$ in such a way that: if the point $A(x_0, y_0, z_0)$ is painted then points $B(x_1, y_1, z_1)$ for which $x_1 \leq x_0, y_1 \leq y_0$ and $z_1 \leq z_0$ could not be painted. Find the maximal number of points that we can paint in such a way the above mentioned condition is satisfied.

2023 Turkey Junior National Olympiad, 4

Let $x_1,x_2,\dots,x_{31}$ be real numbers. Then find the maximum value can $$\sum_{i,j=1,2,\dots,31, \; i\neq j}{\lceil x_ix_j \rceil }-30\left(\sum_{i=1,2,\dots,31}{\lfloor x_i^2 \rfloor } \right)$$ achieve. P.S.: For a real number $x$ we denote the smallest integer that does not subseed $x$ by $\lceil x \rceil$ and the biggest integer that does not exceed $x$ by $\lfloor x \rfloor$. For example $\lceil 2.7 \rceil=3$, $\lfloor 2.7 \rfloor=2$ and $\lfloor 4 \rfloor=\lceil 4 \rceil=4$

2012 AMC 10, 14

Chubby makes nonstandard checkerboards that have $31$ squares on each side. The checkerboards have a black square in every corner and alternate red and black squares along every row and column. How many black squares are there on such a checkerboard? $ \textbf{(A)}\ 480 \qquad\textbf{(B)}\ 481 \qquad\textbf{(C)}\ 482 \qquad\textbf{(D)}\ 483 \qquad\textbf{(E)}\ 484 $

2012 China National Olympiad, 3

Prove for any $M>2$, there exists an increasing sequence of positive integers $a_1<a_2<\ldots $ satisfying: 1) $a_i>M^i$ for any $i$; 2) There exists a positive integer $m$ and $b_1,b_2,\ldots ,b_m\in\left\{ -1,1\right\}$, satisfying $n=a_1b_1+a_2b_2+\ldots +a_mb_m$ if and only if $n\in\mathbb{Z}/ \{0\}$.

2010 Romanian Masters In Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

2012 Argentina Cono Sur TST, 1

Sofía colours $46$ cells of a $9 \times 9$ board red. If Pedro can find a $2 \times 2$ square from the board that has $3$ or more red cells, he wins; otherwise, Sofía wins. Determine the player with the winning strategy.

2014 Contests, 2

Roy's cat eats $\frac{1}{3}$ of a can of cat food every morning and $\frac{1}{4}$ of a can of cat food every evening. Before feeding his cat on Monday morning, Roy opened a box containing $6$ cans of cat food. On what day of the week did the cat finish eating all the cat food in the box? ${ \textbf{(A)}\ \text{Tuesday}\qquad\textbf{(B)}\ \text{Wednesday}\qquad\textbf{(C)}\ \text{Thursday}\qquad\textbf{(D)}}\ \text{Friday}\qquad\textbf{(E)}\ \text{Saturday}$

1997 Turkey MO (2nd round), 3

Let $n$ and $k$ be positive integers, where $n > 1$ is odd. Suppose $n$ voters are to elect one of the $k$ cadidates from a set $A$ according to the rule of "majoritarian compromise" described below. After each voter ranks the candidates in a column according to his/her preferences, these columns are concatenated to form a $k$ x $n$ voting matrix. We denote the number of ccurences of $a \in A$ in the $i$-th row of the voting matrix by $a_{i}$ . Let $l_{a}$ stand for the minimum integer $l$ for which $\sum^{l}_{i=1}{a_{i}}> \frac{n}{2}$. Setting $l'= min \{l_{a} | a \in A\}$, we will regard the voting matrices which make the set $\{a \in A | l_{a} = l' \}$ as admissible. For each such matrix, the single candidate in this set will get elected according to majoritarian compromise. Moreover, if $w_{1} \geq w_{2} \geq ... \geq  w_{k} \geq 0$ are given, for each admissible voting matrix, $\sum^{k}_{i=1}{w_{i}a_{i}}$ is called the total weighted score of $a \in A$. We will say that the system $(w_{1},w_{2}, . . . , w_{k})$ of weights represents majoritarian compromise if the total score of the elected candidate is maximum among the scores of all candidates. (a) Determine whether there is a system of weights representing majoritarian compromise if $k = 3$. (b) Show that such a system of weights does not exist for $k > 3$.

2013 National Olympiad First Round, 24

$77$ stones weighing $1,2,\dots, 77$ grams are divided into $k$ groups such that total weights of each group are different from each other and each group contains less stones than groups with smaller total weights. For how many $k\in \{9,10,11,12\}$, is such a division possible? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None of above} $

2019 MOAA, 6

Let $f(x, y) = \left\lfloor \frac{5x}{2y} \right\rfloor + \left\lceil \frac{5y}{2x} \right\rceil$. Suppose $x, y$ are chosen independently uniformly at random from the interval $(0, 1]$. Let $p$ be the probability that $f(x, y) < 6$. If $p$ can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$, compute $m + n$. (Note: $\lfloor x\rfloor $ is defined as the greatest integer less than or equal to $x$ and $\lceil x \rceil$ is defined as the least integer greater than or equal to$ x$.)

2005 China Girls Math Olympiad, 4

Determine all positive real numbers $ a$ such that there exists a positive integer $ n$ and sets $ A_1, A_2, \ldots, A_n$ satisfying the following conditions: (1) every set $ A_i$ has infinitely many elements; (2) every pair of distinct sets $ A_i$ and $ A_j$ do not share any common element (3) the union of sets $ A_1, A_2, \ldots, A_n$ is the set of all integers; (4) for every set $ A_i,$ the positive difference of any pair of elements in $ A_i$ is at least $ a^i.$

1985 IMO Longlists, 65

Define the functions $f, F : \mathbb N \to \mathbb N$, by \[f(n)=\left[ \frac{3-\sqrt 5}{2} n \right] , F(k) =\min \{n \in \mathbb N|f^k(n) > 0 \},\] where $f^k = f \circ \cdots \circ f$ is $f$ iterated $n$ times. Prove that $F(k + 2) = 3F(k + 1) - F(k)$ for all $k \in \mathbb N.$

2014 Miklós Schweitzer, 1

Let $n$ be a positive integer. Let $\mathcal{F}$ be a family of sets that contains more than half of all subsets of an $n$-element set $X$. Prove that from $\mathcal{F}$ we can select $\lceil \log_2 n \rceil + 1$ sets that form a separating family on $X$, i.e., for any two distinct elements of $X$ there is a selected set containing exactly one of the two elements. Moderator says: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=41&t=614827&hilit=Schweitzer+2014+separating

2009 China Team Selection Test, 1

Let $ \alpha,\beta$ be real numbers satisfying $ 1 < \alpha < \beta.$ Find the greatest positive integer $ r$ having the following property: each of positive integers is colored by one of $ r$ colors arbitrarily, there always exist two integers $ x,y$ having the same color such that $ \alpha\le \frac {x}{y}\le\beta.$

2005 IMAR Test, 3

A flea moves in the positive direction on the real Ox axis, starting from the origin. He can only jump over distances equal with $\sqrt 2$ or $\sqrt{2005}$. Prove that there exists $n_0$ such that the flea can reach any interval $[n,n+1]$ with $n\geq n_0$.

1986 IMO Longlists, 16

Given a positive integer $k$, find the least integer $n_k$ for which there exist five sets $S_1, S_2, S_3, S_4, S_5$ with the following properties: \[|S_j|=k \text{ for } j=1, \cdots , 5 , \quad |\bigcup_{j=1}^{5} S_j | = n_k ;\] \[|S_i \cap S_{i+1}| = 0 = |S_5 \cap S_1|, \quad \text{for } i=1,\cdots ,4 \]

2005 Baltic Way, 1

Let $a_0$ be a positive integer. Define the sequence $\{a_n\}_{n \geq 0}$ as follows: if \[ a_n = \sum_{i = 0}^jc_i10^i \] where $c_i \in \{0,1,2,\cdots,9\}$, then \[ a_{n + 1} = c_0^{2005} + c_1^{2005} + \cdots + c_j^{2005}. \] Is it possible to choose $a_0$ such that all terms in the sequence are distinct?