Found problems: 247
2006 Putnam, B3
Let $S$ be a finite set of points in the plane. A linear partition of $S$ is an unordered pair $\{A,B\}$ of subsets of $S$ such that $A\cup B=S,\ A\cap B=\emptyset,$ and $A$ and $B$ lie on opposite sides of some straight line disjoint from $S$ ($A$ or $B$ may be empty). Let $L_{S}$ be the number of linear partitions of $S.$ For each positive integer $n,$ find the maximum of $L_{S}$ over all sets $S$ of $n$ points.
2008 China Western Mathematical Olympiad, 4
Given an integer $ m\geq 2$, and two real numbers $ a,b$ with $ a > 0$ and $ b\neq 0$. The sequence $ \{x_n\}$ is such that $ x_1 \equal{} b$ and $ x_{n \plus{} 1} \equal{} ax^{m}_{n} \plus{} b$, $ n \equal{} 1,2,...$. Prove that
(1)when $ b < 0$ and m is even, the sequence is bounded if and only if $ ab^{m \minus{} 1}\geq \minus{} 2$;
(2)when $ b < 0$ and m is odd, or when $ b > 0$ the sequence is bounded if and only if $ ab^{m \minus{} 1}\geq\frac {(m \minus{} 1)^{m \minus{} 1}}{m^m}$.
2014 PUMaC Algebra B, 6
There is a sequence with $a(2)=0$, $a(3)=1$ and $a(n)=a\left(\left\lfloor\dfrac n2\right\rfloor\right)+a\left(\left\lceil\dfrac n2\right\rceil\right)$ for $n\geq 4$. Find $a(2014)$. [Note that $\left\lfloor\dfrac n2\right\rfloor$ and $\left\lceil\dfrac n2\right\rceil$ denote the floor function (largest integer $\leq\tfrac n2$) and the ceiling function (smallest integer $\geq\tfrac n2$), respectively.]
1988 USAMO, 3
A function $f(S)$ assigns to each nine-element subset of $S$ of the set $\{1,2,\ldots, 20\}$ a whole number from $1$ to $20$. Prove that regardless of how the function $f$ is chosen, there will be a ten-element subset $T\subset\{1,2,\ldots, 20\}$ such that $f(T - \{k\})\neq k$ for all $k\in T$.
2003 Baltic Way, 17
All the positive divisors of a positive integer $n$ are stored into an increasing array. Mary is writing a programme which decides for an arbitrarily chosen divisor $d > 1$ whether it is a prime. Let $n$ have $k$ divisors not greater than $d$. Mary claims that it suffices to check divisibility of $d$ by the first $\left\lceil\frac{k}{2}\right\rceil$ divisors of $n$: $d$ is prime if and only if none of them but $1$ divides $d$.
Is Mary right?
2003 Germany Team Selection Test, 3
Let $N$ be a natural number and $x_1, \ldots , x_n$ further natural numbers less than $N$ and such that the least common multiple of any two of these $n$ numbers is greater than $N$. Prove that the sum of the reciprocals of these $n$ numbers is always less than $2$: $\sum^n_{i=1} \frac{1}{x_i} < 2.$
2009 JBMO Shortlist, 1
Each one of 2009 distinct points in the plane is coloured in blue or red, so that on every blue-centered unit circle there are exactly two red points. Find the gratest possible number of blue points.
2002 Iran Team Selection Test, 6
Assume $x_{1},x_{2},\dots,x_{n}\in\mathbb R^{+}$, $\sum_{i=1}^{n}x_{i}^{2}=n$, $\sum_{i=1}^{n}x_{i}\geq s>0$ and $0\leq\lambda\leq1$. Prove that at least $\left\lceil\frac{s^{2}(1-\lambda)^{2}}n\right\rceil$ of these numbers are larger than $\frac{\lambda s}{n}$.
2003 China Team Selection Test, 3
Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define
\[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.
2003 AMC 12-AHSME, 24
Positive integers $ a$, $ b$, and $ c$ are chosen so that $ a<b<c$, and the system of equations
\[ 2x\plus{}y\equal{}2003\text{ and }y\equal{}|x\minus{}a|\plus{}|x\minus{}b|\plus{}|x\minus{}c|
\]has exactly one solution. What is the minimum value of $ c$?
$ \textbf{(A)}\ 668 \qquad
\textbf{(B)}\ 669 \qquad
\textbf{(C)}\ 1002 \qquad
\textbf{(D)}\ 2003 \qquad
\textbf{(E)}\ 2004$
2012 Macedonia National Olympiad, 3
Find all functions $f : \mathbb{R} \to \mathbb{Z}$ which satisfy the conditions:
$f(x+y) < f(x) + f(y)$
$f(f(x)) = \lfloor {x} \rfloor + 2$
2021 IMO Shortlist, N8
Find all positive integers $n$ for which there exists a polynomial $P(x) \in \mathbb{Z}[x]$ such that for every positive integer $m\geq 1$, the numbers $P^m(1), \ldots, P^m(n)$ leave exactly $\lceil n/2^m\rceil$ distinct remainders when divided by $n$. (Here, $P^m$ means $P$ applied $m$ times.)
[i]Proposed by Carl Schildkraut, USA[/i]
2001 JBMO ShortLists, 13
At a conference there are $n$ mathematicians. Each of them knows exactly $k$ fellow mathematicians. Find the smallest value of $k$ such that there are at least three mathematicians that are acquainted each with the other two.
[color=#BF0000]Rewording of the last line for clarification:[/color]
Find the smallest value of $k$ such that there (always) exists $3$ mathematicians $X,Y,Z$ such that $X$ and $Y$ know each other, $X$ and $Z$ know each other and $Y$ and $Z$ know each other.
2010 Putnam, A1
Given a positive integer $n,$ what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same?
[When $n=8,$ the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is [i]at least[/i] 3.]
1999 South africa National Olympiad, 1
How many non-congruent triangles with integer sides and perimeter 1999 can be constructed?
2005 All-Russian Olympiad, 2
Given 2005 distinct numbers $a_1,\,a_2,\dots,a_{2005}$. By one question, we may take three different indices $1\le i<j<k\le 2005$ and find out the set of numbers $\{a_i,\,a_j,\,a_k\}$ (unordered, of course). Find the minimal number of questions, which are necessary to find out all numbers $a_i$.
2012 Junior Balkan MO, 3
On a board there are $n$ nails, each two connected by a rope. Each rope is colored in one of $n$ given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors.
a) Can $n$ be $6$ ?
b) Can $n$ be $7$ ?
2012 National Olympiad First Round, 36
$k$ stones are put into $2012$ boxes in such a way that each box has at most $20$ stones. We are chosing some of the boxes. We are throwing some of the stones of the chosen boxes. Whatever the first arrangement of the stones inside the boxes is, if we can guarantee that there are equal stones inside the chosen boxes and the sum of them is at least $100$, then $k$ can be at least?
$ \textbf{(A)}\ 500 \qquad \textbf{(B)}\ 450 \qquad \textbf{(C)}\ 420 \qquad \textbf{(D)}\ 349 \qquad \textbf{(E)}\ 296$
2010 Brazil National Olympiad, 2
Let $P(x)$ be a polynomial with real coefficients. Prove that there exist positive integers $n$ and $k$ such that $k$ has $n$ digits and more than $P(n)$ positive divisors.
2019 IMO Shortlist, N8
Let $a$ and $b$ be two positive integers. Prove that the integer
\[a^2+\left\lceil\frac{4a^2}b\right\rceil\]
is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.)
[i]Russia[/i]
2014 China Girls Math Olympiad, 2
Let $x_1,x_2,\ldots,x_n $ be real numbers, where $n\ge 2$ is a given integer, and let $\lfloor{x_1}\rfloor,\lfloor{x_2}\rfloor,\ldots,\lfloor{x_n}\rfloor $ be a permutation of $1,2,\ldots,n$.
Find the maximum and minimum of $\sum\limits_{i=1}^{n-1}\lfloor{x_{i+1}-x_i}\rfloor$ (here $\lfloor x\rfloor $ is the largest integer not greater than $x$).
2010 Romanian Master of Mathematics, 4
Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions:
(i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers);
(ii) $|a_1-b_1|+|a_2-b_2|=2010$;
(iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$;
(iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$.
[i]Massimo Gobbino, Italy[/i]
2002 Iran Team Selection Test, 6
Assume $x_{1},x_{2},\dots,x_{n}\in\mathbb R^{+}$, $\sum_{i=1}^{n}x_{i}^{2}=n$, $\sum_{i=1}^{n}x_{i}\geq s>0$ and $0\leq\lambda\leq1$. Prove that at least $\left\lceil\frac{s^{2}(1-\lambda)^{2}}n\right\rceil$ of these numbers are larger than $\frac{\lambda s}{n}$.
2019 HMNT, 5
Compute the sum of all positive real numbers $x \le 5$ satisfying $$x =\frac{ \lceil x^2 \rceil + \lceil x \rceil \cdot \lfloor x \rfloor}{ \lceil x\rceil + \lfloor x \rfloor}$$
2010 USAMO, 3
The 2010 positive numbers $a_1, a_2, \ldots , a_{2010}$ satisfy the inequality $a_ia_j \le i+j$ for all distinct indices $i, j$. Determine, with proof, the largest possible value of the product $a_1a_2\ldots a_{2010}$.