Found problems: 3
2020 Mexico National Olympiad, 4
Let $n\ge 3$ be an integer. In a game there are $n$ boxes in a circular array. At the beginning, each box contains an object which can be rock, paper or scissors, in such a way that there are no two adjacent boxes with the same object, and each object appears in at least one box.
Same as in the game, rock beats scissors, scissors beat paper, and paper beats rock.
The game consists on moving objects from one box to another according to the following rule:
[i]Two adjacent boxes and one object from each one are chosen in such a way that these are different, and we move the loser object to the box containing the winner object. For example, if we picked rock from box A and scissors from box B, we move scossors to box A.[/i]
Prove that, applying the rule enough times, it is possible to move all the objects to the same box.
[i]Proposed by Victor de la Fuente[/i]
2020 Mexico National Olympiad, 3
Let $n\ge 3$ be an integer. Two players, Ana and Beto, play the following game. Ana tags the vertices of a regular $n$- gon with the numbers from $1$ to $n$, in any order she wants. Every vertex must be tagged with a different number. Then, we place a turkey in each of the $n$ vertices.
These turkeys are trained for the following. If Beto whistles, each turkey moves to the adjacent vertex with greater tag. If Beto claps, each turkey moves to the adjacent vertex with lower tag.
Beto wins if, after some number of whistles and claps, he gets to move all the turkeys to the same vertex. Ana wins if she can tag the vertices so that Beto can't do this. For each $n\ge 3$, determine which player has a winning strategy.
[i]Proposed by Victor and Isaías de la Fuente[/i]
2019 Tournament Of Towns, 2
Consider 2n+1 coins lying in a circle. At the beginning, all the coins are heads up. Moving clockwise, 2n+1 flips are performed: one coin is flipped, the next coin is skipped, the next coin is flipped, the next two coins are skipped, the next coin is flipped,the next three coins are skipped and so on, until finally 2n coins are skipped and the next coin is flipped.Prove that at the end of this procedure,exactly one coin is heads down.