This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2015 AMC 10, 14

The diagram below shows the circular face of a clock with radius $20$ cm and a circular disk with radius $10$ cm externally tangent to the clock face at $12$ o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction? [asy] size(170); defaultpen(linewidth(0.9)+fontsize(13pt)); draw(unitcircle^^circle((0,1.5),0.5)); path arrow = origin--(-0.13,-0.35)--(-0.06,-0.35)--(-0.06,-0.7)--(0.06,-0.7)--(0.06,-0.35)--(0.13,-0.35)--cycle; for(int i=1;i<=12;i=i+1) { draw(0.9*dir(90-30*i)--dir(90-30*i)); label("$"+(string) i+"$",0.78*dir(90-30*i)); } dot(origin); draw(shift((0,1.87))*arrow); draw(arc(origin,1.5,68,30),EndArrow(size=12));[/asy] $ \textbf{(A) }\text{2 o'clock} \qquad\textbf{(B) }\text{3 o'clock} \qquad\textbf{(C) }\text{4 o'clock} \qquad\textbf{(D) }\text{6 o'clock} \qquad\textbf{(E) }\text{8 o'clock} $