This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2021 Sharygin Geometry Olympiad, 10-11.5

A secant meets one circle at points $A_1$, $B_1$։, this secant meets a second circle at points $A_2$, $B_2$. Another secant meets the first circle at points $C_1$, $D_1$ and meets the second circle at points $C_2$, $D_2$. Prove that point $A_1C_1 \cap B_2D_2$, $A_1C_1 \cap A_2C_2$, $A_2C_2 \cap B_1D_1$, $B_2D_2 \cap B_1D_1$ lie on a circle coaxial with two given circles.

2023 ISL, G8

Let $ABC$ be an equilateral triangle. Let $A_1,B_1,C_1$ be interior points of $ABC$ such that $BA_1=A_1C$, $CB_1=B_1A$, $AC_1=C_1B$, and $$\angle BA_1C+\angle CB_1A+\angle AC_1B=480^\circ$$ Let $BC_1$ and $CB_1$ meet at $A_2,$ let $CA_1$ and $AC_1$ meet at $B_2,$ and let $AB_1$ and $BA_1$ meet at $C_2.$ Prove that if triangle $A_1B_1C_1$ is scalene, then the three circumcircles of triangles $AA_1A_2, BB_1B_2$ and $CC_1C_2$ all pass through two common points. (Note: a scalene triangle is one where no two sides have equal length.) [i]Proposed by Ankan Bhattacharya, USA[/i]

2017 239 Open Mathematical Olympiad, 2

Inside the circle $\omega$ through points $A, B$ point $C$ is chosen. An arbitrary point $X$ is selected on the segment $BC$. The ray $AX$ cuts the circle in $Y$. Prove that all circles $CXY$ pass through a two fixed points that is they intersect and are coaxial, independent of the position of $X$.

2023 IMO, 6

Let $ABC$ be an equilateral triangle. Let $A_1,B_1,C_1$ be interior points of $ABC$ such that $BA_1=A_1C$, $CB_1=B_1A$, $AC_1=C_1B$, and $$\angle BA_1C+\angle CB_1A+\angle AC_1B=480^\circ$$ Let $BC_1$ and $CB_1$ meet at $A_2,$ let $CA_1$ and $AC_1$ meet at $B_2,$ and let $AB_1$ and $BA_1$ meet at $C_2.$ Prove that if triangle $A_1B_1C_1$ is scalene, then the three circumcircles of triangles $AA_1A_2, BB_1B_2$ and $CC_1C_2$ all pass through two common points. (Note: a scalene triangle is one where no two sides have equal length.) [i]Proposed by Ankan Bhattacharya, USA[/i]

2016 Saint Petersburg Mathematical Olympiad, 5

Points $A$ and $P$ are marked in the plane not lying on the line $\ell$. For all right triangles $ABC$ with hypotenuse on $\ell$, show that the circumcircle of triangle $BPC$ passes through a fixed point other than $P$.

2018 Taiwan TST Round 1, 6

Given six points $ A, B, C, D, E, F $ such that $ \triangle BCD \stackrel{+}{\sim} \triangle ECA \stackrel{+}{\sim} \triangle BFA $ and let $ I $ be the incenter of $ \triangle ABC. $ Prove that the circumcenter of $ \triangle AID, \triangle BIE, \triangle CIF $ are collinear. [i]Proposed by Telv Cohl[/i]