Found problems: 257
2022 Czech and Slovak Olympiad III A, 3
Given a scalene acute triangle $ABC$, let M be the midpoints of its side $BC$ and $N$ the midpoint of the arc $BAC$ of its circumcircle. Let $\omega$ be the circle with diameter $BC$ and $D$, $E$ its intersections with the bisector of angle $\angle BAC$. Points $D'$, $E'$ lie on $\omega$ such that $DED'E' $ is a rectangle. Prove that $D'$, $E'$, $M$, $N$ lie on a single circle.
[i] (Patrik Bak)[/i]
2006 Korea Junior Math Olympiad, 3
In a circle $O$, there are six points, $A,B,C,D,E, F$ in a counterclockwise order. $BD \perp CF$, and $CF,BE,AD$ are concurrent. Let the perpendicular from $B$ to $AC$ be $M$, and the perpendicular from $D$ to $CE$ be $N$. Prove that $AE // MN$.
2006 Estonia Team Selection Test, 2
The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.
2021 Sharygin Geometry Olympiad, 8.6
Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.
1995 All-Russian Olympiad Regional Round, 9.7
A regular hexagon of side $5$ is cut into unit equilateral triangles by lines parallel to the sides of the hexagon. We call the vertices of these triangles knots. If more than half of all knots are marked, show that there exist five marked knots that lie on a circle.
Ukrainian TYM Qualifying - geometry, 2020.10
In triangle $ABC$, point $I$ is the center, point $I_a$ is the center of the excircle tangent to the side $BC$. From the vertex $A$ inside the angle $BAC$ draw rays $AX$ and $AY$. The ray $AX$ intersects the lines $BI$, $CI$, $BI_a$, $CI_a$ at points $X_1$, $...$, $X_4$, respectively, and the ray $AY$ intersects the same lines at points $Y_1$, $...$, $Y_4$ respectively. It turned out that the points $X_1,X_2,Y_1,Y_2$ lie on the same circle. Prove the equality $$\frac{X_1X_2}{X_3X_4}= \frac{Y_1Y_2}{Y_3Y_4}.$$
2020 Regional Competition For Advanced Students, 3
Let a triangle $ABC$ be given with $AB <AC$. Let the inscribed center of the triangle be $I$. The perpendicular bisector of side $BC$ intersects the angle bisector of $BAC$ at point $S$ and the angle bisector of $CBA$ at point $T$. Prove that the points $C, I, S$ and $T$ lie on a circle.
(Karl Czakler)
2018 Korea Winter Program Practice Test, 3
Denote $A_{DE}$ by the foot of perpendicular line from $A$ to line $DE$. Given concyclic points $A,B,C,D,E,F$, show that the three points determined by the lines $A_{FD}A_{DE}$ , $B_{DE}B_{EF}$ , $C_{EF}C_{FD}$, and the three points determined by the lines $D_{CA}D_{AB}$ , $E_{AB}E_{BC}$ , $F_{BC}F_{CA}$ are concyclic.
2023 Dutch IMO TST, 3
The center $O$ of the circle $\omega$ passing through the vertex $C$ of the isosceles triangle $ABC$ ($AB = AC$) is the interior point of the triangle $ABC$. This circle intersects segments $BC$ and $AC$ at points $D \ne C$ and $E \ne C$, respectively, and the circumscribed circle $\Omega$ of the triangle $AEO$ at the point $F \ne E$. Prove that the center of the circumcircle of the triangle $BDF$ lies on the circle $\Omega$.
2017 Greece National Olympiad, 1
An acute triangle $ABC$ with $AB<AC<BC$ is inscribed in a circle $c(O,R)$. The circle $c_1(A,AC)$ intersects the circle $c$ at point $D$ and intersects $CB$ at $E$. If the line $AE$ intersects $c$ at $F$ and $G$ lies in $BC$ such that $EB=BG$, prove that $F,E,D,G$ are concyclic.
2014 Saudi Arabia GMO TST, 4
Let $ABC$ be a triangle, $D$ the midpoint of side $BC$ and $E$ the intersection point of the bisector of angle $\angle BAC$ with side $BC$. The perpendicular bisector of $AE$ intersects the bisectors of angles $\angle CBA$ and $\angle CDA$ at $M$ and $N$, respectively. The bisectors of angles $\angle CBA$ and $\angle CDA$ intersect at $P$ . Prove that points $A, M, N, P$ are concyclic.
2015 Costa Rica - Final Round, 1
Let $ABCD$ be a quadrilateral whose diagonals are perpendicular, and let $S$ be the intersection of those diagonals. Let $K, L, M$ and $N$ be the reflections of $S$ on the sides $AB$, $BC$, $CD$ and $DA$ respectively. $BN$ cuts the circumcircle of $\vartriangle SKN$ at $E$ and $BM$ cuts the circumcircle of $\vartriangle SLM$ at $F$. Prove that the quadrilateral $EFLK$ is cyclic.
Durer Math Competition CD 1st Round - geometry, 2010.D3
Prove that the diagonals of a quadrilateral are perpendicular to each other if and only if the midpoints of it's sides lie on a circle.
2018 Ecuador NMO (OMEC), 5
Let $ABC$ be an acute triangle and let $M$, $N$, and $ P$ be on $CB$, $AC$, and $AB$, respectively, such that $AB = AN + PB$, $BC = BP + MC$, $CA = CM + AN$. Let $\ell$ be a line in a different half plane than $C$ with respect to to the line $AB$ such that if $X, Y$ are the projections of $A, B$ on $\ell$ respectively, $AX = AP$ and $BY = BP$. Prove that $NXYM$ is a cyclic quadrilateral.
Kyiv City MO 1984-93 - geometry, 1989.10.5
The base of the quadrangular pyramid $SABCD$ is a quadrilateral $ABCD$, the diagonals of which are perpendicular. The apex of the pyramid is projected at intersection point $O$ of the diagonals of the base. Prove that the feet of the perpendiculars drawn from point $O$ to the side faces of the pyramid lie on one circle.
2006 Switzerland - Final Round, 5
A circle $k_1$ lies within a second circle $k_2$ and touches it at point $A$. A line through $A$ intersects $k_1$ again in $B$ and $k_2$ in $C$. The tangent to $k_1$ through $B$ intersects $k_2$ at points $D$ and $E$. The tangents at $k_1$ passing through $C$ intersects $k_1$ in points $F$ and $G$. Prove that $D, E, F$ and $G$ lie on a circle.
2016 Germany Team Selection Test, 1
The two circles $\Gamma_1$ and $\Gamma_2$ with the midpoints $O_1$ resp. $O_2$ intersect in the two distinct points $A$ and $B$. A line through $A$ meets $\Gamma_1$ in $C \neq A$ and $\Gamma_2$ in $D \neq A$. The lines $CO_1$ and $DO_2$ intersect in $X$.
Prove that the four points $O_1,O_2,B$ and $X$ are concyclic.
2019 Regional Olympiad of Mexico West, 4
Let $ABC$ be a triangle. $M$ the midpoint of $AB$ and $L$ the midpoint of $BC$. We denote by $G$ the intersection of $AL$ with $CM$ and we take $E$ a point such that $G$ is the midpoint of the segment $AE$. Prove that the quadrilateral $MCEB$ is cyclic if and only if $MB = BG$.
2022 Indonesia TST, G
Let $AB$ be the diameter of circle $\Gamma$ centred at $O$. Point $C$ lies on ray $\overrightarrow{AB}$. The line through $C$ cuts circle $\Gamma$ at $D$ and $E$, with point $D$ being closer to $C$ than $E$ is. $OF$ is the diameter of the circumcircle of triangle $BOD$. Next, construct $CF$, cutting the circumcircle of triangle $BOD$ at $G$. Prove that $O,A,E,G$ are concyclic.
(Possibly proposed by Pak Wono)
2019 Philippine TST, 4
Let $P$ be a point in parallelogram $ABCD$ such that $$PA \cdot PC + PB \cdot PD = AB \cdot BC.$$ Prove that the reflections of $P$ over lines $AB$, $BC$, $CD$, and $DA$ are concyclic.
VI Soros Olympiad 1999 - 2000 (Russia), 11.4
Given isosceles triangle $ABC$ ($AB = AC$). A straight line $\ell$ is drawn through its vertex $B$ at a right angle with $AB$ . On the straight line $AC$, an arbitrary point $D$ is taken, different from the vertices, and a straight line is drawn through it at a right angle with $AC$, intersecting $\ell$ at the point $F$. Prove that the center of the circle circumscribed around the triangle $BCD$ lies on the circumscribed circle of triangle $ABD$.
2013 Costa Rica - Final Round, 3
Let $ABC$ be a triangle, right-angled at point $ A$ and with $AB>AC$. The tangent through $ A$ of the circumcircle $G$ of $ABC$ cuts $BC$ at $D$. $E$ is the reflection of $ A$ over line $BC$. $X$ is the foot of the perpendicular from $ A$ over $BE$. $Y$ is the midpoint of $AX$, $Z$ is the intersection of $BY$ and $G$ other than $ B$, and $F$ is the intersection of $AE$ and $BC$. Prove $D, Z, F, E$ are concyclic.
2015 Hanoi Open Mathematics Competitions, 10
A right-angled triangle has property that, when a square is drawn externally on each side of the triangle, the six vertices of the squares that are not vertices of the triangle are concyclic. Assume that the area of the triangle is $9$ cm$^2$. Determine the length of sides of the triangle.
XMO (China) 2-15 - geometry, 5.1
Let $\vartriangle ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ and orthocenter $H$. Circle $\odot V$ is the circumcircle of $\vartriangle DE F$. Let segments $FD$, $BH$ intersect at point $P$. Let segments $ED$, $HC$ intersect at point $Q$. Let $K$ be a point on $AC$ such that $VK \perp CF$.
a) Prove that $\vartriangle PQH \sim \vartriangle AKV$.
b) Let line $PQ$ intersect $\odot V$ at points $I,G$. Prove that points $B,I,H,G,C$ are concyclic [hide]with center the symmetric point $X$ of circumcenter $O$ of $\vartriangle ABC$ wrt $BC$.[/hide]
[hide=PS.] There is a chance that those in the hide were not wanted in the problem, as I tried to understand the wording from a solutions' video. I couldn't find the original wording pdf or picture.[/hide]
[img]https://cdn.artofproblemsolving.com/attachments/c/3/0b934c5756461ff854d38f51ef4f76d55cbd95.png[/img]
[url=https://www.geogebra.org/m/cjduebke]geogebra file[/url]
2022 Bulgarian Autumn Math Competition, Problem 9.2
Given is the triangle $ABC$ such that $BC=13, CA=14, AB=15$ Prove that $B$, the incenter $J$ and the midpoints of $AB$ and $BC$ all lie on a circle