This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1950 Moscow Mathematical Olympiad, 175

a) We are given $n$ circles $O_1, O_2, . . . , O_n$, passing through one point $O$. Let $A_1, . . . , A_n$ denote the second intersection points of $O_1$ with $O_2, O_2$ with $O_3$, etc., $O_n$ with $O_1$, respectively. We choose an arbitrary point $B_1$ on $O_1$ and draw a line segment through $A_1$ and $B_1$ to the second intersection with $O_2$ at $B_2$, then draw a line segment through $A_2$ and $B_2$ to the second intersection with $O_3$ at $B_3$, etc., until we get a point $B_n$ on $O_n$. We draw the line segment through $B_n$ and $A_n$ to the second intersection with $O_1$ at $B_{n+1}$. If $B_k$ and $A_k$ coincide for some $k$, we draw the tangent to $O_k$ through $A_k$ until this tangent intersects $O_{k+1}$ at $B_{k+1}$. Prove that $B_{n+1}$ coincides with $B_1$. b) for $n=3$ the same problem.