This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1970 Regional Competition For Advanced Students, 2

In the plane seven different points $P_1, P_2, P_3, P_4, Q_1, Q_2, Q_3$ are given. The points $P_1, P_2, P_3, P_4$ are on the straight line $p$, the points $Q_1, Q_2, Q_3$ are not on $p$. By each of the three points $Q_1, Q_2, Q_3$ the perpendiculars are drawn on the straight lines connecting points different of them. Prove that the maximum's number of the possibles intersections of all perpendiculars is to 286, if the points $Q_1, Q_2, Q_3$ are taken in account as intersections.

2013 Iran Team Selection Test, 14

we are given $n$ rectangles in the plane. Prove that between $4n$ right angles formed by these rectangles there are at least $[4\sqrt n]$ distinct right angles.

2005 National Olympiad First Round, 24

There are $20$ people in a certain community. $10$ of them speak English, $10$ of them speak German, and $10$ of them speak French. We call a [i]committee[/i] to a $3$-subset of this community if there is at least one who speaks English, at least one who speaks German, and at least one who speaks French in this subset. At most how many commitees are there in this community? $ \textbf{(A)}\ 120 \qquad\textbf{(B)}\ 380 \qquad\textbf{(C)}\ 570 \qquad\textbf{(D)}\ 1020 \qquad\textbf{(E)}\ 1140 $

1991 China Team Selection Test, 3

All edges of a polyhedron are painted with red or yellow. For an angle of a facet, if the edges determining it are of different colors, then the angle is called [i]excentric[/i]. The[i] excentricity [/i]of a vertex $A$, namely $S_A$, is defined as the number of excentric angles it has. Prove that there exist two vertices $B$ and $C$ such that $S_B + S_C \leq 4$.

2000 Tournament Of Towns, 4

Among a set of $2N$ coins, all identical in appearance, $2N - 2$ are real and $2$ are fake. Any two real coins have the same weight . The fake coins have the same weight, which is different from the weight of a real coin. How can one divide the coins into two groups of equal total weight by using a balance at most $4$ times, if (a) $N = 16$, ( b ) $N = 11$ ? (A Shapovalov)

2008 Switzerland - Final Round, 4

Consider three sides of an $n \times n \times n$ cube that meet at one of the corners of the cube. For which $n$ is it possible to use this completely and without overlapping to cover strips of paper of size $3 \times 1$? The paper strips can also do this glued over the edges between these cube faces.

2020 China National Olympiad, 4

Find the largest positive constant $C$ such that the following is satisfied: Given $n$ arcs (containing their endpoints) $A_1,A_2,\ldots ,A_n$ on the circumference of a circle, where among all sets of three arcs $(A_i,A_j,A_k)$ $(1\le i< j< k\le n)$, at least half of them has $A_i\cap A_j\cap A_k$ nonempty, then there exists $l>Cn$, such that we can choose $l$ arcs among $A_1,A_2,\ldots ,A_n$, whose intersection is nonempty.

2017 Pakistan TST, Problem 2

There are $n$ students in a circle, one behind the other, all facing clockwise. The students have heights $h_1 <h_2 < h_3 < \cdots < h_n$. If a student with height $h_k$ is standing directly behind a student with height $h_{k-2}$ or lesss, the two students are permitted to switch places Prove that it is not possible to make more than $\binom{n}{3}$ such switches before reaching a position in which no further switches are possible.

2019 Philippine TST, 1

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2021 Dutch Mathematical Olympiad, 2

We consider sports tournaments with $n \ge 4$ participating teams and where every pair of teams plays against one another at most one time. We call such a tournament [i]balanced [/i] if any four participating teams play exactly three matches between themselves. So, not all teams play against one another. Determine the largest value of $n$ for which a balanced tournament with $n$ teams exists.

2024 Korea Summer Program Practice Test, 7

$2024$ people attended a party. Eunson, the host of the party, wanted to make the participant shake hands in pairs. As a professional daydreamer, Eunsun wondered which would be greater: the number of ways each person could shake hands with $4$ others or the number of ways each person could shake hands with $3$ others. Solve Eunsun's peculiar question.

2012 Kazakhstan National Olympiad, 3

There are $n$ balls numbered from $1$ to $n$, and $2n-1$ boxes numbered from $1$ to $2n-1$. For each $i$, ball number $i$ can only be put in the boxes with numbers from $1$ to $2i-1$. Let $k$ be an integer from $1$ to $n$. In how many ways we can choose $k$ balls, $k$ boxes and put these balls in the selected boxes so that each box has exactly one ball?

2021 LMT Fall, 15

There are $28$ students who have to be separated into two groups such that the number of students in each group is a multiple of $4$. The number of ways to split them into the groups can be written as $$\sum_{k \ge 0} 2^k a_k = a_0 +2a_1 +4a_2 +...$$ where each $a_i$ is either $0$ or $1$. Find the value of $$\sum_{k \ge 0} ka_k = 0+ a_1 +2a_2 +3a3_ +....$$

EMCC Team Rounds, 2016

[b]p1.[/b] Lisa is playing the piano at a tempo of $80$ beats per minute. If four beats make one measure of her rhythm, how many seconds are in one measure? [b]p2.[/b] Compute the smallest integer $n > 1$ whose base-$2$ and base-$3$ representations both do not contain the digit $0$. [b]p3.[/b] In a room of $24$ people, $5/6$ of the people are old, and $5/8$ of the people are male. At least how many people are both old and male? [b]p4.[/b] Juan chooses a random even integer from $1$ to $15$ inclusive, and Gina chooses a random odd integer from $1$ to $15$ inclusive. What is the probability that Juan’s number is larger than Gina’s number? (They choose all possible integers with equal probability.) [b]p5.[/b] Set $S$ consists of all positive integers less than or equal to $ 2016$. Let $A$ be the subset of $S$ consisting of all multiples of $6$. Let $B$ be the subset of $S$ consisting of all multiples of $7$. Compute the ratio of the number of positive integers in $A$ but not $B$ to the number of integers in $B$ but not $A$. [b]p6.[/b] Three peas form a unit equilateral triangle on a flat table. Sebastian moves one of the peas a distance $d$ along the table to form a right triangle. Determine the minimum possible value of $d$. [b]p7.[/b] Oumar is four times as old as Marta. In $m$ years, Oumar will be three times as old as Marta will be. In another $n$ years after that, Oumar will be twice as old as Marta will be. Compute the ratio $m/n$. [b]p8.[/b] Compute the area of the smallest square in which one can inscribe two non-overlapping equilateral triangles with side length $ 1$. [b]p9.[/b] Teemu, Marcus, and Sander are signing documents. If they all work together, they would finish in $6$ hours. If only Teemu and Sander work together, the work would be finished in 8 hours. If only Marcus and Sander work together, the work would be finished in $10$ hours. How many hours would Sander take to finish signing if he worked alone? [b]p10.[/b]Triangle $ABC$ has a right angle at $B$. A circle centered at $B$ with radius $BA$ intersects side $AC$ at a point $D$ different from $A$. Given that $AD = 20$ and $DC = 16$, find the length of $BA$. [b]p11.[/b] A regular hexagon $H$ with side length $20$ is divided completely into equilateral triangles with side length $ 1$. How many regular hexagons with sides parallel to the sides of $H$ are formed by lines in the grid? [b]p12[/b]. In convex pentagon $PEARL$, quadrilateral $PERL$ is a trapezoid with side $PL$ parallel to side $ER$. The areas of triangle $ERA$, triangle $LAP$, and trapezoid $PERL$ are all equal. Compute the ratio $\frac{PL}{ER}$. [b]p13.[/b] Let $m$ and $n$ be positive integers with $m < n$. The first two digits after the decimal point in the decimal representation of the fraction $m/n$ are $74$. What is the smallest possible value of $n$? [b]p14.[/b] Define functions $f(x, y) = \frac{x + y}{2} - \sqrt{xy}$ and $g(x, y) = \frac{x + y}{2} + \sqrt{xy}$. Compute $g (g (f (1, 3), f (5, 7)), g (f (3, 5), f (7, 9)))$. [b]p15.[/b] Natalia plants two gardens in a $5 \times 5$ grid of points. Each garden is the interior of a rectangle with vertices on grid points and sides parallel to the sides of the grid. How many unordered pairs of two non-overlapping rectangles can Nataliia choose as gardens? (The two rectangles may share an edge or part of an edge but should not share an interior point.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Kvant 2024, M2791

A number is written in each cell of the $N \times N$ square. Let's call cell $C$ [i]good[/i] if in one of the cells adjacent to $C$ on the side, there is a number $1$ more than in $C$, and in some other of the cells adjacent to $C$ on the side, there is a number $3$ more than in $C$. What is the largest possible number of good cells? [i] Proposed by A. Chebotarev [/i]

2017 Harvard-MIT Mathematics Tournament, 9

[b]N[/b]ew this year at HMNT: the exciting game of RNG baseball! In RNG baseball, a team of infinitely many people play on a square field, with a base at each vertex; in particular, one of the bases is called the home base. Every turn, a new player stands at home base and chooses a number n uniformly at random from $\{0, 1, 2, 3, 4\}$. Then, the following occurs: • If $n>0$, then the player and everyone else currently on the field moves (counterclockwise) around the square by n bases. However, if in doing so a player returns to or moves past the home base, he/she leaves the field immediately and the team scores one point. • If $n=0$ (a strikeout), then the game ends immediately; the team does not score any more points. What is the expected number of points that a given team will score in this game?

2010 China Team Selection Test, 3

An (unordered) partition $P$ of a positive integer $n$ is an $n$-tuple of nonnegative integers $P=(x_1,x_2,\cdots,x_n)$ such that $\sum_{k=1}^n kx_k=n$. For positive integer $m\leq n$, and a partition $Q=(y_1,y_2,\cdots,y_m)$ of $m$, $Q$ is called compatible to $P$ if $y_i\leq x_i$ for $i=1,2,\cdots,m$. Let $S(n)$ be the number of partitions $P$ of $n$ such that for each odd $m<n$, $m$ has exactly one partition compatible to $P$ and for each even $m<n$, $m$ has exactly two partitions compatible to $P$. Find $S(2010)$.

1980 Tournament Of Towns, (001) 1

On the circumference of a circle there are red and blue points. One may add a red point and change the colour of both its neighbours (to the other colour) or remove a red point and change the colour of both its previous neighbours. Initially there are two red points. Prove that there is no sequence of allowed operations which leads to the configuration consisting of two blue points. (K Kazarnovskiy, Moscow)

2017 Taiwan TST Round 2, 4

Find all integer $c\in\{0,1,...,2016\}$ such that the number of $f:\mathbb{Z}\rightarrow\{0,1,...,2016\}$ which satisfy the following condition is minimal:\\ (1) $f$ has periodic $2017$\\ (2) $f(f(x)+f(y)+1)-f(f(x)+f(y))\equiv c\pmod{2017}$\\ Proposed by William Chao

2023 Bulgarian Spring Mathematical Competition, 11.4

Given is a tree $G$ with $2023$ vertices. The longest path in the graph has length $2n$. A vertex is called good if it has degree at most $6$. Find the smallest possible value of $n$ if there doesn't exist a vertex having $6$ good neighbors.

2020 Thailand TST, 6

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. [i]Czech Republic[/i]

1988 Tournament Of Towns, (201) 4

There are $1988$ towns and $4000$ roads in a certain country (each road connects two towns) . Prove that there is a closed path passing through no more than $20$ towns. (A. Razborov , Moscow)

1988 IMO Longlists, 75

Let $S$ be an infinite set of integers containing zero, and such that the distances between successive number never exceed a given fixed number. Consider the following procedure: Given a set $X$ of integers we construct a new set consisting of all numbers $x \pm s,$ where $x$ belongs to $X$ and s belongs to $S.$ Starting from $S_0 = \{0\}$ we successively construct sets $S_1, S_2, S_3, \ldots$ using this procedure. Show that after a finite number of steps we do not obtain any new sets, i.e. $S_k = S_{k_0}$ for $k \geq k_0.$

2017 Serbia Team Selection Test, 2

Initally a pair $(x, y)$ is written on the board, such that exactly one of it's coordinates is odd. On such a pair we perform an operation to get pair $(\frac x 2, y+\frac x 2)$ if $2|x$ and $(x+\frac y 2, \frac y 2)$ if $2|y$. Prove that for every odd $n>1$ there is a even positive integer $b<n$ such that starting from the pair $(n, b)$ we will get the pair $(b, n)$ after finitely many operations.

2005 China National Olympiad, 5

There are 5 points in a rectangle (including its boundary) with area 1, no three of them are in the same line. Find the minimum number of triangles with the area not more than $\frac 1{4}$, vertex of which are three of the five points.